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Climate change impact assessment is critical for 
creating adequate climate change mitigation and 
adaptation policies and plans. Communicating the 
results of these impact assessments is equally 
important for improving the understanding of climate 
change impacts across various sectors, encouraging 
local action, minimizing future harm in communities, 
and making progress towards the UN Sustainable 
Development Goals (SDGs). Notably, a better 
understanding of climate change impacts on the 
water and energy systems would facilitate the 
fulfillment of SDG2 (end hunger), SDG 6 (clean water 
and sanitation), SDG 7 (affordable and clean energy), 
SDG 11 (sustainable cities and communities), and SDG 
13 (climate action), with many indirect benefits 
across many other areas. 

Critical infrastructure systems (e.g., water and 
energy systems) are particularly at risk for climate 
change impacts. For instance, increased intensity and 
frequency of droughts due to climate change may 
lead to reductions in water availability, which can 
compound with other disasters and lead to cascading 
impacts throughout the system1,2. Likewise, energy 
systems are impacted by increasing temperatures 
caused by climate change3. In particular, air-
conditioning use is expected to increase during 
summer months in many parts of the world, straining 
the electricity grid4. These impacts propagate 
through the system, ultimately impacting 
households. In 2018, the United States Energy 
Information Administration (EIA) reported that nearly 
one-fifth of the households in this country chose to 
forgo necessities (e.g., food, medicine, etc.) in order 
to pay for their electricity bills5. Often, to limit the 
cost of energy bills, lower-income households will 

avoid using air conditioning during the summer6, 
which leads to heat-related health issues7. Similar 
work has shown that drought-induced demand 
management programs lead to increased water bills 
for lower income households8,9. It is likely that these 
issues will become more pronounced under climate 
change, making it imperative that we work to 
understand localized climate change impacts. 

Nonetheless, conducting climate change impact 
assessment, particularly at the community-level, is 
not an easy task. Often, the impact assessment 
models require access to substantial computational 
resources to run the complex models, as well as the 
expertise to work with those models and interpret 
their results, which may not be possible for all 
communities. As such, there is a need to expand 
climate change impact assessment to include more 
accessible models that can handle high-resolution, 
local data that is of interest to communities. 

This report by the United Nations University Institute 
for Water, Environment and Health (UNU-INWEH) 
highlights how climate impact assessment studies can 
benefit from the power of artificial intelligence (AI). 
The report details the use of a state-of-the-art 
machine learning (ML) model to conduct a 
computationally efficient climate change impact 
assessment. This model is applied to a case study 
across the United States of America (U.S.) as an 
example to showcase the insights it generates in real-
world applications. To demonstrate this process, the 
study will focus on the impacts on coupled water and 
electricity demand (e.g., the water-electricity 
demand nexus). In particular, the report leverages 
data from U.S. cities collected from water and 
electricity utilities over the past decade. To conduct 

KEY MESSAGES 

 Investigating localized climate changes impacts on critical infrastructure is important for developing 
equitable mitigation and adaptation policies. 

 Artificial intelligence (AI) can be used to conduct flexible and computationally efficient climate change 
impact assessment. 

 Input data can range from traditional climate simulations from Earth Systems Models (ESMs) to recently 
developed proxies for future climate projections. 

 AI algorithms can easily handle both types of input data for a variety of applications. 
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the impact assessment, the report demonstrates two 
different means of collecting future climate data—
Coupled Model Intercomparison Project 5 (CMIP5) 
Earth System Models (ESMs) and contemporary 
climate analogs. ESMs are large physics-based models 
that simulate how the Earth's physical, chemical, and 
biological systems work under various scenarios. In 
particular, the CMIP5 suite of ESMs are focused on 
simulating the future climate of the Earth using 
changing CO2 emissions as the primary force behind 
shifting climatic patterns. These models are highly 
specialized and complex, requiring a deep 
understanding to run and extract information from. 
Thus, there is a need for more easily understood and 
implemented means to determine future climatic 
patterns. This report utilizes climate analogs to fill 
this need. A climate analog is a location with a 
modern climate that can be used as a proxy for some 
other location's future climate. In other words, the 
climate of location A in 2020 may be similar to the 
projected climate of location B in 2050, thus location 
A becomes a climate analog of location B. These 
analogs are often determined based ESMs, such as the 

CMIP5 models, but once developed can be used with 
easily accessible data on current or historical 
weather and climate. In addition to demonstrating 
the power of AI for climate change impact 
assessment, this report aims to compare these two 
sources of future climate data within an AI 
framework. 

This report demonstrates that AI methodology is 
effective for conducting computationally efficient 
climate change impact assessment. In particular, the 
report focuses on the climate change impacts to 
water and electricity demand, which are highly 
interconnected infrastructure systems. Traditional 
means of conducting climate change impact 
assessment may not be viable for smaller or 
underserved communities, thus finding novel, more 
accessible means of providing these critical results to 
local areas is crucial for ensuring equitable climate 
change mitigation and adaptation. Here, AI is used to 
aid this goal in two primary ways. First, the use of AI 
allows for flexible, computationally efficient models 
that can be easily run in web- or cloud-based 

A collage of a few climate and weather-related extreme events that are expected to intensify under climate change: loss 
of glacial ice, wildfires, hurricanes, floods, heatwaves, and droughts (from left to right). Image credit: U.S. National 
Oceanic and Atmospheric Administration 
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services. This makes them more accessible to smaller 
communities. Second, we compare two means of 
obtaining future climate simulations—the traditional 
ESM data and contemporary climate analogs. The 
results in this report demonstrate the power of using 
the analogs to conduct studies across a wide variety 
of cities, ranging in population, in the U.S. The report 
shows that regardless of the input data, AI can be 
used to project changes in the water and electricity 
demand under climate change. In particular, the 
report shows significant increases across the 
Midwestern U.S. when using ESM-derived data. 
Similar results were found through the climate 
analog-derived data, suggesting that the analogs can 
be used successfully as proxies for traditional ESM 
data in communities that might not have access to 
the larger CMIP suite of models. 

Understanding the impacts of climate change on 
critical infrastructure is important for building 
sustainable and equitable policies for climate change 
mitigation and adaptation. These infrastructure 
systems are often interconnected (e.g., the water-
energy nexus) and managed by local entities. Thus, 
while climate change is a global problem requiring 

cooperation across countries and sectors, many 
solutions require local action. In this sense, the 
results presented in this report can be used to deepen 
our scientific understanding of climate change 
impacts on the water-energy nexus, as well as 
develop novel methodologies that integrate ML with 
traditional climate change impact assessment to 
better prepare local communities for the future. 

The use of AI for climate change impact assessment 
represents an opportunity to expand the use of 
impact assessment to communities, ultimately 
helping society to increase resilience and prepare for 
the future. AI provides a computationally efficient 
and flexible means to model the impacts of climate 
change across a variety of sectors. Moreover, with the 
growing popularity of data science and breakthroughs 
in the Fourth Industrial Revolution (Industry 4.0), the 
use of AI models has increased in various areas, 
including the private and public sectors. In this sense, 
in communities where running large-scale impact 
assessment models is not feasible, there may still be 
expertise to run web- or cloud-based AI models to 
understand climate change impacts in their 
communities.

KEY FINDINGS 

 After 2.0°C of warming, Midwestern U.S. cities are likely to experience a median increase of 20% (± 10%) 
in electricity use under a high warming scenario. 

 The Midwestern U.S. region could consume up to 30% (± 10%) more electricity after 3.0°C of warming 
above pre-industrial levels. 

 Midwestern U.S. cities could experience an increase in water consumption up to 7.5% (± 5%) after 2.0°C 
of warming and 12% (± 7%) after 3.0°C during future summer months.  

 Across the entire continental U.S., future increases in summer water and electricity demand under 
climate change could be up to 15% and 20%, respectively. 

 There are strong regional differences across the U.S., with a few cities shown to possibly experience 
reductions in water and electricity use under climate change. 
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Introduction 
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The changing climate will impact every sector on 
Earth—from droughts and floods reducing agricultural 
output to heatwaves putting undue stress on 
electricity systems. Already, society is seeing a 
significant increase in the number of “billion dollar” 
events, or climate-related disasters that cause more 
than one billion U.S. dollars worth of direct damages. 
These events include storms, hurricanes, wildfires, 
flooding, and droughts. Further, climate change will 
create a major public health crisis, particularly in 
areas that already have high numbers of vulnerable 
people. As such it is crucial that we work to 
understand the impacts of climate change across a 
variety of sectors and regions. 
 
Climate change impact assessment is a key tool for 
estimating how various sectors may be impacted by 
the climate crisis, given different warming 
scenarios10. These assessments have provided critical 
insights into water availability11 and droughts12,13, 
energy supply14-16 and demand17,18, and many more 
applications in both the natural and built 
environments. Understanding how various sectors 
may be impacted by climate change is critical for 
building resilience to future changes. For example, 
knowing how climate change may reduce water 
availability in the worst-case scenario allows utilities 
and infrastructure managers to plan for alternative 
supply or implement demand management 
techniques. Further, impact assessment can often be 
conducted for multiple warming scenarios and time 
horizons19. This allows users to investigate the 
implications of surpassing seemingly small 
temperature thresholds (e.g., the difference 
between 1.5 and 2.0°C)20. Yet, there remain 
challenges associated with these models. 
 
One challenge for conducting climate change impact 
assessment is the scale and complexity of the models 
commonly used for such analysis. In particular, many 
impact assessment models are physics-based models 
that require in-depth knowledge on how to run the 
model, as well as how to analyze the output. This can 
be challenging for small or underserved communities 
that may not have the funds or expertise to run these 
large-scale models.  
 
 
 

Further, the computational capacity can pose a 
challenge, as these large-scale climate change 
impact assessment models often require the use of 
high-performance super computers, which are costly 
to operate and maintain. Local communities are 
unlikely to have access to such computational power, 
even if they have funding and expertise needed to 
run the impact assessment models. Additionally, 
many impact assessment models are dependent on 
ESM data21, yet this data is rarely at the scale or 
specificity needed for impact assessment models22. In 
practice, this means downscaling and bias-correcting 
output from climate simulations, another 
computationally extensive process requiring funding 
and expertise. Thus, if we are to encourage localized 
climate change impact assessment that can be 
conducted around the world, there is a need to build 
models that are (a) easily implemented, (b) 
accessible, and (c) computationally efficient. 
Integrating artificial intelligence with these complex 
climate models is one means of addressing these 
issues23. 
 
This UNU-INWEH report outlines a study leveraging AI 
for climate change impact assessment as a means of 
demonstrating its potential. The report shows that AI 
is not only flexible and computationally efficient, but 
also it can provide rapid, highly local estimates of 
climate change impacts across a variety of sectors. 
Moreover, with the rapid deployment of web- and 
cloud-based services, the AI models discussed in this 
report can be easily accessed around the world with 
minimal computational resources. 

 
View of Lake Mead from the Arizona side of the Hoover  
Dam during drought, 2015. Image Credit: Peter 
Thoeny/Flickr 
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Why AI for Impact Assessment? 
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Artificial intelligence (AI) is a growing field, ranging 
from more traditional statistical machine learning 
(ML) techniques to advanced deep learning methods. 
Within this spectrum, there are a number of 
algorithms that one can use, depending upon the 
application of interest. For example, leveraging a 
more interpretable class of algorithms, such as 
decision tree-based algorithms, can help people 
understand why a certain phenomenon is occurring. 
Alternatively, for applications that require highly 
accurate predictions, but little to no interpretability, 
deep learning methods can be an effective solution. 
Regardless of which algorithm one chooses, the goal 
of most AI algorithms is to predict some quantity (or 
quantities in the case of multi-outcome modeling) 
given a series of input variables. This is frequently 
referred to as supervised learning24. Using supervised 
learning algorithms, the model will determine the 
nonlinear function that best explains the 
mathematical relationship between the quantity of 
interest and the input variables. When leveraging AI 
for climate change impact assessment, this 
mathematical relationship is assumed to be 
stationary, such that when the climate changes, the 
quantity of interest responds to those changes 
following that same mathematical relationship. This 

critical assumption allows researchers to quickly 
project the impacts of climate change for a variety 
of sectors.   

 
Leveraging AI algorithms for climate change impact 
assessment exhibits several benefits over traditional 
models. For instance, AI algorithms aim to minimize 
expected prediction error, which effectively 
balances bias and variance24,25. By doing this, the 
algorithms are better able to predict values, even if 
they were previously unknown. Many traditional 
models lean towards reducing bias (i.e., being 
explainable), while allowing variance to increase 
rapidly. By allowing for some increase in bias, AI 
algorithms reduce the variance and the overall 
predictive error24,25. Further, AI models can lead to 
improvements within large impact assessment 
models, as the results from the AI models can be 
integrated into these models for scenario testing and 
other complex techniques. Additionally, AI models 
are computationally efficient and are able to be run 
through many web- and cloud-based services. In this 
sense, AI tools can be used quickly and easily. This is 
different from traditional impact assessment models, 
which generally need significant computational 
resources and can be unwieldy for non-experts.  

Connection between artificial intelligence (AI), machine learning (ML), and a number of other data science 
fields.  
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In this UNU-INWEH report, we will demonstrate the 
use of AI for climate change impact assessment to 
understand how shifting climatic patterns will impact 
water and electricity demand across the U.S. 
Specifically, we will be using domain-informed ML, 
which means that we will leverage domain expertise 
to determine input variables and frame the model. 
This use of domain-informed ML represents a 
different branch of AI than more complex deep 
learning algorithms, where the focus is solely on the 
prediction, rather than balancing prediction and 
interpretation.  
 
The focus on domain-informed input variables 
ensures that the mathematical relationships used 
within the model are based on physical variables that 
have been previously shown to have some kind of 
relationship with the quantity of interest. In other 
words, it is important to ensure that we are not 
building our models off of spurious relationships that 
do not have a physical basis. Further, domain-

informed techniques are often easier to communicate 
with stakeholders, as the relationships picked up by 
the algorithms are often familiar. Within domain-
informed ML, we also emphasize the interpretability 
of models, rather than relying solely on highly 
predictive “black box” methods. An ongoing 
challenge within the AI/ML community is figuring out 
why an algorithm is producing highly accurate 
predictions. That is, what variables are having an 
impact and how are they impacting the final 
prediction. There is a balance between 
interpretability (e.g., being able to answer the “why” 
questions thoroughly) and predictability (e.g., having 
a highly accurate prediction)24. Domain-informed ML 
seeks to maximize both of these qualities, as both are 
needed to build trust in a given model. When working 
with climate change impact assessment, it is 
especially critical to communicate and engage with 
stakeholders—for that, the stakeholders need to 
understand and trust the models. 

 

Key Benefits of AI/ML for Climate Change Impact Assessment 
 

Flexibility: 
Artificial intelligence (AI) and machine learning (ML) models are flexible and able to handle a number of 
different data sources and types. AI/ML has been used across a variety of application areas and geographic 
domains and its flexibility also improves the transferability of AI/ML models to other areas of interest. 
 
Computational Efficiency:  
AI/ML models, particularly those that fall into domain-informed machine learning, are generally 
computationally efficient and are able to run on web- and cloud-based services. This makes them easy to 
run outside of academic spaces where resources may be minimal. 
 
Accessibility:  
AI/ML models can be integrated into accessible platforms that can be used by local stakeholders. Moreover, 
as data science and AI/ML become more commonplace in higher education, there will be an increasing 
number of graduates working in industry and government with AI/ML experience. 
 
Pattern Recognition:  
AI/ML models can accurately recognize complex patterns and relationships between predictors and 
response variables. Often these relationships are nonlinear, making them difficult to recognize without 
the help of computational technology. 
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Exploring the Water-Energy Nexus in the 
United States 
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In this UNU-INWEH report, we focus on the United 
States of America (U.S.) as a case study to 
demonstrate the utility of AI for climate change 
impact assessment. Like other parts of the world, the 
U.S. is experiencing a growing number of extreme 
climate-related events, which only expected to get 
more intense as climate change continues to 
intensify. Further, within the U.S. (as elsewhere), the 
water and power sectors are highly interconnected, 
often referred to as the water-energy nexus26,27. 
Thermoelectric plants make up nearly 75% of the 
power plants in the U.S.28, which require water for 
cooling. In terms of hydropower, the U.S. generates 
just over 6% of its electricity from hydropower, but 
this makes up over 25% of the total renewable energy 
profile29. Hydropower is highly dependent on the 
surrounding environment, with minor changes in the 
timing and quantity of streamflow having major 
impacts on the generation capacity30. Understanding 
this interconnectivity between water and electricity 
supply in the U.S. is critical to meeting future clean 
energy needs. This is particularly true in light of 
President Joe Biden's ambitious goal to fully 
decarbonize the U.S. energy sector by 203531. If the 
U.S. is to meet this goal, it is imperative that the 

water-energy nexus be accounted for when planning 
for future power generation capabilities. 

A key strategy of decarbonization is the 
electrification of the energy sector32, which reduces 
reliance on fossil fuel-based heating (e.g., through 
natural gas or heating oil) and thus reduces 
greenhouse gas (GHG) emissions. When paired with 
increased renewable energy penetration, this is an 
effective strategy for reducing the overall GHG 
emissions. However, as more sectors become reliant 
on electricity, the interconnectivity between 
electricity and other critical infrastructure services 
increases. For example, in the U.S., the water 
treatment and distribution infrastructure is already 
heavily reliant on electricity. It was estimated that in 
2012, U.S. water utilities used more than 37,000 GWh 
for both drinking water and wastewater services33. 
This is equivalent to the electricity consumed by 
about 1.3 million United Kingdom citizens (just over 
the population of Birmingham), 4.9 million Indians 
(about a third of the population of Bangalore), or 14.5 
million Nigerians (nearly the population of Lagos). 
Moreover, it has been estimated that water-related 
electricity consumption will increase, particularly in 
those U.S. states that are already experiencing water 

A bar chart showing the number of individual weather- and climate-related events that caused more than one billion 
U.S. dollars of damage each year since 1980. Image credit: U.S. Global Change Research Program 
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stress34. Additionally, extreme climate events could 
lead to cascading failures across multiple 
interdependent systems. For example, during the 
Texas cold snap caused by winter storm Uri in 2021, 
there were widespread power outages. These outages 
impacted the water system, leading to water 
shortages35. Thus, a storm that directly impacted the 
energy sector, led to cascading failures and indirect 
impacts on the water sector. 

Beyond the climate change impacts on the 
interconnected water and electricity supply, there is 
a growing body of work investigating the impacts of 
climate change on U.S. water and electricity 
demand, which are projected to shift under climate 
change. As the U.S. energy sector shifts towards 
increasing electrification32, understanding the 
climate impacts on demand structures will become 
increasingly important. For example, nearly 90% of 
U.S. households used air conditioning in 202236, with 
that number expected to continue growing due to 
higher temperatures and more frequent heatwaves. 
With this high penetration of air conditioning, 
electric utilities often experience the peak 
electricity demand during the summer37. Given that 

climate change is making summers warmer with more 
extreme heat events38, it is projected that air 
conditioning use will increase significantly4, leading 
to increases in overall and peak electricity demand39. 
These spikes will, in turn, lead to an increased need 
to generate electricity, which may lead to increased 
water consumption by the power sector. 
Simultaneously, droughts are likely to increase12,40-42, 
which are likely to be compounded by increased 
water demand1,43,44. Understanding these impacts is 
critical for building resilience in our interconnected 
infrastructure systems, as well as working to mitigate 
climate change. 

 

Infographic depicting the water-energy nexus within the U.S. Image Credit: U.S. Department of Energy 

Water used by thermoelectric power plants in the U.S. Image 
Credit: U.S. Energy Information Administration 
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Model Development and Evaluation in the 
Observational Space 
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In this UNU-INWEH report, we are focusing on 
domain-informed ML, a branch of AI that seeks to 
provide accurate predictions, as well as allowing for 
better grounding of models in the physical world. In 
order to conduct domain-informed ML for climate 
change impact assessment, the first step is to build 
the model using observational data. In this step, the 
model is learning the relationship between the 
response (i.e., dependent) and predictor (i.e., 
independent) variables. In this report, water and 
electricity demand are our interdependent response 
variables, while the observed climatic conditions are 
our predictors. Thus, ensuring this observational data 
is accurate and representative is critical to ensuring 

both an accurate prediction in the observational 
space and a reliable projection into the future. 

When developing the model, we adopt the following 
general process. First, we start with data collection 
and pre-processing. For this study, this involves 
normalizing the water and electricity demand by the 
service population, spatiotemporal aggregation to 
obtain monthly values in both the demand and 
climate data, and finally, adjusting the trends to 
focus solely on climate impacts following a statistical 
process45. This statistical trend adjustment is a 
critical step for climate change impact studies and 
has been used in a number of demand-based 
studies16,17,46. Then, we randomize the sample and 
split the data into training and test sets. These 
different sets are used in a cross-validation loop to 
iteratively train the model and test the predictive 
capabilities of the model using the test data, which 
was not used during the training stage. In this way, 
we can evaluate how well a model performs when 
predicting previously unknown data. Within this loop, 
we also conduct variable selection to determine 
which variables are the most important for obtaining 
accurate predictions. These important variables are 

then used in the final model. Finally, the final model 
is used to investigate future changes to the coupled 
water-electricity system, given future climate data 
as input variables, which we discuss in later sections.  
In this UNU-INWEH report, we showcase an example 
of building the model using observational data from 
six Midwestern cities: Chicago (IL), Cleveland (OH), 
Columbus (OH), Indianapolis (IN), Madison (WI), and 
Minneapolis (MN). In particular, we built this model 
considering three different seasonal periods—summer 
(June through September), winter (December 
through March), and intermediate (April, May, 
October, and November). Moreover, we tested two 
variable sets. The first only included dry bulb (or air) 

temperature and precipitation, which represents the 
traditional variable set used frequently in both 
academic literature and managerial practice. We 
refer to this as the Baseline model throughout the 
study. The second variable set included the results 
from our larger variable selection, which included 
relative humidity, wind speed, and other measures of 
temperature in addition to the traditional variables. 
We refer to this model as the Selected Feature 
model. To compare these models, we calculated the 
root mean squared error (RMSE). RMSE is a measure 
of predictive error, with lower values signifying less 
error in the model. Thus, lower RMSE values point to 
a more accurate model. 

In particular, the results demonstrate the improved 
predictive accuracy of the Selected Feature model 
over the Baseline model, particularly at the extreme 
ends of the demand structure. This improvement is 
more pronounced in the water demand than 
electricity demand across the seasons, indicating 
that the additional variables considered in the 
Selected Feature model are critical for accurate 
water demand predictions. These variables are still 

The general framework for conducting climate change impact assessment using AI/ML. The process begins with data 
collection and pre-processing. Then, within a cross-validation loop, the models are trained and tested using 
observational data. Finally, the best model is selected, often based on predictive accuracy, and is used to make 
projections using future climate simulations as input data. 
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important for electricity demand predictions but are 
less crucial in comparison to the water demand. 

Additionally, it is important to note the difference 
between the summer and winter months. Given that 
the summer months tend to be more sensitive to 
climate (i.e., through outdoor landscaping and air-
conditioning), it is not surprising to see that the 
model does much better at predicting the summer 
water and electricity consumption than in the winter. 
In particular, the winter electricity is the most 
difficult to predict, as this region relies primarily on 
natural gas for heating, rather than electricity. As 
such, the primary electricity uses in the winter 
months are lighting, cooking, etc., which are not 
heavily influenced by climate. As the U.S. shifts 
towards electrification as a means to combat climate 
change, it is likely that we will see a stronger climatic 
influence over winter electricity consumption. This 
process, however, was not accounted for in this study. 

The improved predictive accuracy of the Selected 
Feature model is further demonstrated by the root 
mean squared error (RMSE) improvement. Here, the 
out-of-sample (i.e., test set) RMSE is plotted for both 
variable sets. The RMSE for the Selected Feature 
model is significantly lower than the Baseline model, 
particularly in the summer months. This indicates 
that (a) the Selected Feature variable set is a more 
effective predictor of the climate-sensitive coupled 
water and electricity demand in the Midwest, and (b) 
that the model is capable of generating accurate 
predictions of both water and electricity demand 
across seasons. As such, we continue to leverage this 
model going forward for use in making projections 
into the future under climate change. 

 

 

  

Observed water and electricity demand data compared to the two types of model runs: the Baseline model (denoted 
‘Precip-Temp’) and the Selected Feature model. The RMSE values for each utility and season are shown on the right 
hand side of the figure. The results are two-fold: (1) the AI model is able to accurately predict the water and 
electricity use across the Midwest region; and (b) the consideration of non-traditional variables, such as relative 
humidity, is important for further improving the prediction. 
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Integrating Earth System Model Data into the 
AI Algorithm 
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Once the observational model has been trained and 
tested, it can be used for projection analysis. In order 
to obtain projections of future water and electricity 
demand under climate change, there is a need to 
collect future climate data. In this study, we 
demonstrate two means of collecting this data, the 
first is through the Coupled Model Intercomparison 
Project (CMIP) Earth System Models (ESMs). These 
large-scale climate simulation models can be 
downscaled and bias-corrected for use in local impact 
assessment. Here, we use five models from the CMIP5 
era to collect climate data for the six Midwestern 
cities used in the model development stage (Chicago, 
Cleveland, Columbus, Indianapolis, Madison, and 
Minneapolis). The purpose of this projection is to 
focus on the impacts of climate change, so we do not 
account for possible techno-demographic shifts, 
which will also impact how and to what degree 
society uses water and electricity in the future. In 
particular, we calculate the percent change between 
the water and electricity demand predicted in the 
historical reference period (1971-2000) and the 30-
year period in which each ESM surpassed 1.5, 2.0 and 
3.0°C of warming compared to pre-industrial levels. 

The developed ML model projects increases in water 
demand across both seasons and both scenarios, 
while electricity demand is only projected to increase 
in the summer months. Moreover, as the world 
surpasses the higher temperature thresholds, these 
patterns become more pronounced. This indicates a 
significant increase in climate-induced water and 
electricity demand increases that utilities will need 
to be prepared for, if they hope to maintain adequate 
service levels. In terms of the winter electricity use, 
the projected reduction is likely due to less need for 

electric space heating. However, it is not enough to 
fully offset the summer increases, possibly leading to 
more extreme swings in demand over the course of 
year, a challenge for maintaining a functional grid. 

Due to the nature of ESMs, in which each model 
results in slightly different simulations of future 
climate variables, our analysis also results in 
different projections of water and electricity 
demand, depending on the ESM. In particular, we see 
more uncertainty in the winter months than the 
summer months, as well as between electricity 
demand and water demand. Specifically, the summer 
demand shows consistently positive changes (i.e., 
increasing demand) across the scenarios and 
temperature thresholds, while the winter demand 
shows more variability. This uncertainty speaks to (a) 
the variability in the ESM models, particularly in 
winter months, and (b) the lower climate sensitivity 
in the winter months, which would lead to a weaker 
“signal” within the data, thus a more variable 
projection. Nonetheless, the variance in the winter 

Projected changes to Midwestern U.S. regional water 
and electricity demand under low (dark green) and high 
(light green) warming scenarios (RCP2.6 and RCP8.5, 
respectively) using ESM-derived input data. The bars 
represent the median, while the error bars show the 
interquantile range. Note that under the low warming 
scenario, the world does not surpass 3.0°C of warming, 
thus there is no projection for that scenario. 

Schematic of an Earth System Model (ESM). Image 
Credit: The Global Geodetic Observing System 
(Link to Image) 

https://ggos.org/about/org/bureau/bps/cwg/committee-on-contribution-to-earth-system-modelling/
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months could create further difficulties for the 
utilities, which are unable to plan for a future in 
which the demand could increase or decrease, 
depending on the future climate warming scenarios 
taken. As the ESM models become more accurate, it 
is possible that this uncertainty band would shrink, 
creating an opportunity to better inform 
management entities and local communities of the 
possible impacts to the demand structure. 

In addition to the regional analysis discussed above, 
we also conducted the analysis for the cities of 
Chicago and Indianapolis, the largest cities in the 
study region. We present results from the high 
warming (RCP8.5) scenario after the 1.5 and 2.0°C 
thresholds, as this scenario represents the worst-case 
scenario over the course of the near- and medium-
term future. The results demonstrate similar patterns 
across both cities, with projected increases in both 
water and electricity during the summer months. 
There are differences, however, such as the 
magnitude of the projected increase in water 
demand across the two cities. Chicago demonstrates 
less increase in water demand than Indianapolis, 
which aligns with the urban form of both cities. In 
particular, Chicago is more densely urban than 
Indianapolis, which is likely why they experience less 

climate-induced water demand increases—they 
simply don't have the green space that would demand 
water use in the summer. Indianapolis, on the other 
hand, is more sprawling with suburban-like 
neighborhoods fairly close to the city center. This 
likely leads to an increased use of water for 
landscaping, which would, in turn, be impacted by 
climate change. 

Focusing on Chicago in particular, surpassing the 
1.5°C threshold leads to a 12% increase in summer 
electricity demand, which likely to occur within the 
next 10-15 years. Should the city's population grow 
sustainably (i.e., shared socioeconomic pathway 1; 
SSP1), this could lead to a total increase in 745,000 
MWh in electricity demand. Should society continue 
down fossil-fueled development (i.e., shared 
socioeconomic pathway 5; SSP5), the increase would 
jump to a total of 1.06 million MWh after just 1.5°C 
of warming. Under 2.0°C of warming with SSP1 value 
could increase to 1.6 million MWh, more than double 
the increase under the 1.5°C warming threshold. This 
intense increase highlights the need to cap emissions 
and limit warming from the local utility and 
community perspective. 

 

 

 

  

Projected water and electricity demand in the cities of Chicago (Illinois) and Indianapolis (Indiana) during the 
summer months under the high warming (RCP8.5) scenario using ESM-derived input data. The bars show the 
median with error bars representing the interquantile range. 
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Integrating Climate Analogs into the AI 
Algorithm 
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Leveraging the ESMs aligns with traditional work on 
climate change impact assessment, but these data 
sources are not always accessible to local 
communities or smaller organizations. As such, it is 
beneficial to determine alternative means of 
obtaining future climate data. In this study, we 
leverage contemporary climate analogs to act as 
proxies for the ESM data. Climate analogs are 
determined through a statistical process that 
identifies the location in which the current climate is 
analogous to the future climate in the city of 
interest. This technique has been used to identify 
corresponding climate analogs around the world, 
including cities in the North America47, Africa48, and 
China49,50. The approach has also been used for 
communication- and policy-focused studies51,52. We 
leverage contemporary North American climate 
analogs47 to project the water and electricity demand 
across 46 U.S. cities.   

 
 
We began this part by building the model in the 
observational space, following a similar process as 
before. We split the data into the three main 
seasonal blocks and leveraged the same data 
discussed above. The primary difference is the use of 
reanalysis data for the climate observations, rather 
than the weather station data. This was a decision 
made based on the size of the dataset, which would 
have required multiple weather stations per city to 
triangulate the city-wide values. Moreover, we 
needed access to observed climate variables in 
Mexico, since several U.S. cities have Mexican 
analogs. As such, we opt to leverage a gridded 
reanalysis dataset—the North American Regional 
Reanalysis53. 
 
The model performance in the observational space 

was favorable, with median normalized root mean 
squared error (NRMSE) values of 0.12 and 0.15 for 
electricity and water demand, respectively. This 
means that the median error for both water and 
electricity demand was below 15% across the 46 
cities, indicating a strong predictive performance. 
This aligns with the results from the Midwestern case 
study, which likewise showed relatively small 
predictive error.  
 
In this case, the analogs were not for a specific 
temperature threshold, rather a certain year (2080) 
and warming scenario (RCP8.5 or high warming). 
Thus, the results show the projections of water and 
electricity demand in 2080 under the high warming 
scenario, only accounting for the climate-induced 
effects (i.e., not considering the techno-
demographic shifts that will have taken place prior to 
2080). As such, we will discuss the results in terms of 
the climate-sensitive portion of demand, as in 
previous sections.    
 
In general, the results show a projected increase in 
summer electricity demand, while summer water 
demand is projected to remain the same or increase 
slightly across much of the U.S. Conversely, winter 
electricity demand is projected to decrease across 
the country, with only moderate changes to winter 
water demand. Our results from the Midwestern 
cities show some of the highest increases in summer 
electricity use, as well as some of the largest 
decreases in winter electricity use. This result aligns 
with the results from above, which leveraged the ESM 
data directly. The climate analogs, though based on 
ESM data, provide an alternative to the traditional 
approach to impact assessment, thus it is encouraging 
to see similar results, at least across the Midwestern 
region. 
 
In the Northeast, electricity use is projected to 
increase in the summer months, while water use is 
projected to remain relatively stable. Under the high 
emissions scenario, temperatures are projected to 
increase in this region, which will likely lead to higher 
use of air conditioning, thus, increasing electricity 
consumption in the region. This could pose a 
challenge for the regional grid management, which 
historically, has not dealt with extreme demand 
peaks in the summer17. In this sense, it is critical that 
utilities and grid managers work to ensure their 
future investments in generation and transmission 
can handle increased frequency and intensity of 
summer peak loads. 
 
In terms of the projected water demand, the cities 
located within the mountain region and the Western 

U.S. cities of interest and their contemporary 
analogs under the high warming (RCP8.5) scenario. 
These analogs were used to develop proxy data for 
the model inputs without running any ESMs. 
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U.S. are likely going to see increases in demand. This 
increase is going to exacerbate the ongoing issues of 
drought and water availability12,54,55, particularly 
given the complex water governance in the region. 
Further, the stress put on water systems will be 
worsened by the simultaneous increase in electricity 
demand, which could limit the effectiveness of 
hydroelectric plants14,56, a key feature of many 
climate change mitigation plans in the region. 
Understanding these interconnections is critical for 
building resilient water and electricity systems, as 
well as ensuring society does not fall back on carbon-
intensive sources during periods of extreme weather. 
 
Although most cities are showing increases in summer 
water and electricity demand in the high warming 
scenario, there are a few cities projected to see 
decreases in the climate-sensitive portion of the 
demand. These cities are primarily located in the 
Southern U.S. and have analogs from more tropical 
regions in coastal Mexico. This north-south gradient 
could have major implications for the management of 
the connected electricity grid, as well as the 
country's major surface water and aquifer systems, 
yet the gradient itself is counterintuitive. In general, 
we expect warm, dry regions to get warmer and drier 
under climate change, however, there is a strong 
possibility that without adequate mitigation and 
adaptation, many cities could experience entirely 
novel climates by the end of the 21st century. In fact, 

previous work has shown that the likelihood of 
experiencing a novel climate in any given region 
increases as the warming becomes more extreme57. 
In fact, in a study conducted across the U.S., it was 
determined that the Sonoran Desert in Arizona and 
much of the coastal region off the Gulf of Mexico are 
the most likely to experience novel climates by the 
end of the century57. This aligns will with our 
findings, which show projected decreases across 
much of these regions, as their topical analogs are 
generally wetter and slightly cooler (on average) 
during the summer months. In other words, these 
dissimilar analogs in the Southern U.S. could lead to 
novel climates, which ultimately leads the model to 
project decreases in the climate-sensitive portion of 
the water and electricity demand.   
 
This gradient is not as pronounced in the winter 
months, in which the majority of the cities are 
projected to experience decreases in water and 
electricity demand. The electricity reductions are 
likely due to the milder winters leading to less need 
for electric space heating, a finding shown earlier for 
the Midwestern cities. There are a few cities in the 
Southern region that demonstrate minimal changes in 
electricity demand (e.g., Orlando and Tampa, both in 
Florida), as well as a few cities that are projected to 
experience increases in demand (e.g., Miami, Florida 
and Austin, Texas). These latter increases are 
indicative of winters that become more extreme, 

Percent change in water and electricity demand across U.S. cities for the high warming (RCP8.5) scenario using the 
analog approach. 
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leading to an increase in space cooling (i.e., air-
conditioning). That being said, across the 46 cities, 
the average reduction in winter electricity 
consumption is 6.8% (with a maximum of 19%), which 
is not enough to counteract the increases projected 
in the summer months (average = 7.7%, maximum = 
21.4%). Thus, managing the swings between summer 
and winter electricity demand could become more 
difficult for grid managers. In terms of winter water 
consumption, most cities show little to no change 
(average = 1.5% increase), but several cities in the 
Western U.S., including Las Vegas (Nevada) and 
several Californian cities), are projected to see larger 
increases. This could ultimately increase the stress 
on the water resources in the region. 
 
Looking at specific cities, the three most populous 
cities in the U.S. (New York City, Chicago, and Los 
Angeles) are projected to have significant increases 
in summer electricity demand, with minimal changes 
to the water demand. In fact, the per capita 
electricity demand is projected to increase between 

6 and 12% for each of these cities. Depending on the 
shared socioeconomic pathway followed, this 6-12% 
increase could lead to 2.5-9 million MWh of additional 
electricity consumption for a given summer month. In 
particular, if we follow shared socioeconomic 
pathway, SSP5, the most likely pathway with high 
warming, we estimated that the utilities that serve 
Chicago would need to generate 5.7 million MWh, 
while the Los Angeles and New York utilities would 
have to generate 9.2 million MWh and 9.0 million 
MWh, respectively. Should the utilities seek to 
expand renewable energy generation, expanding 
capacity to account for climate-induced increases to 
demand could create additional costs and possibly 
delay decarbonization efforts. For example, 
generating 3.8 million MWh for Los Angeles residents 
would require 14,000 1.5 MW wind turbines, which 
represents about 20% of the operational turbines in 
the U.S. today—just to supply less than half of Los 
Angeles County. Overall, the inclusion of these 
climate-induced changes is critical for adequate 
planning of both water and electricity systems. 

  View of Lake Oroville in California (U.S.) during a recent extreme drought. Image Credit: California Department of Water 
Resources 
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Discussion & Policy Recommendations 
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As the climate crisis continues to intensify, 
understanding the impacts it will have on critical 
infrastructure is an important aspect to promote 
sustainable and equitable mitigation and adaptation 
policies. However, many traditional climate change 
impact assessment tools can be difficult to obtain and 
implement at the local level. Communities may not 
have the resources (financial or experience-based) to 
run these models, let alone downscale them to the 
local level. One solution to this issue is to leverage AI 
models, which are computationally efficient, 
flexible, and can be integrated into existing cloud- or 
web-based services. Moreover, the proliferation of AI 
and ML courses means that it is more likely that local 
communities can employ someone with the 
knowledge to run AI models than someone with the 
knowledge to run specialized climate change impact 
assessment models. This UNU-INWEH report detailed 
how one may implement AI for climate change impact 
assessment, as well the benefits of such an approach. 
To provide an example of this type of methodology, 
we presented results from a case study focused on 
the water-electricity demand nexus. 
 
Specifically, the results presented in this UNU-INWEH 
report are critical for aiding in decision-making, 
particularly with regard to preparing water and 
energy systems for future climate change. Often 
decisions regarding water and energy systems are 
made in isolation by individual utilities that are only 
considering their service (e.g., just the climate 
impacts on electricity)58,59. As the water-energy 
nexus concept becomes more common in practice, it 
is likely that these decisions will become more 
integrated. However, there remains a computational 
gap for analyzing future changes, particularly for 
smaller communities, which may not have access to 
high-fidelity ESM output for representing future 
climate-related impacts. As such, this report 
demonstrated two means of leveraging AI for 
projecting climate change impacts—first using 
downscaled, bias-corrected ESM data and second 
using contemporary climate analogs as a proxy for 
ESM data. The latter method shows great promise for 
expanding community-scale capabilities for 
projecting climate change impacts. Further, since 
the contemporary climate analog dataset contains 
analogs for 540 North American cities47, there is 
ample opportunity to expand this work across the 
continent and work with smaller municipalities. 
 
Additionally, the analyses reported here show strong 
regional differences in how climate change may 
impact demand structures, including extreme 
increases in summer water and electricity use in 
some regions, with possible reductions in other 

regions. These differences could pose issues for our 
interconnected electric grid and waterways. This 
could lead to increased inter-state tension, as cities 
in upstream (watershed) areas may need to withdraw 
more water, for example, to supply growing demand, 
leaving downstream cities with less. 
 
Nonetheless, there remain critical gaps for extending 
this work beyond the U.S. While the AI approach can 
be used around the world, it is reliant on data 
availability. That is, if the data on the system of 
interest and the climate-related variables are not 
available or of good quality, it is not possible to 
conduct an AI analysis. However, with the growing 
use of cloud-based services and increased recognition 
of the importance of data sharing, these methods are 
becoming increasingly useful across the globe. In 
particular, regions within the Global South are seeing 
increasingly rapid infrastructure development, while 
also expecting to experience the most intense 
climate change impacts. In these areas, having access 
to an accurate AI-based tool to quickly project 
climate change impacts can help to ensure new 
developments are as resilient as possible, while also 
working to mitigate the worst of the impacts. 
 
Going forward, it is imperative that we continue to 
build and share our climate change impact 
assessment toolbox, which must include more 
accessible and flexible models, such as the AI models 
presented in this report. By ensuring that the climate 
change impact assessment models are flexible 
enough to be used anywhere in the world and sharing 
the resources to not only use the models, but also to 
collect the necessary data, we can work towards a 
more sustainable and equitable plan for climate 
change mitigation and adaptation. 
 

 
A dry lakebed during a drought in California (U.S.). 
Image Credit: U.S. National Oceanic and Atmospheric 
Administration
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  Appendix I - Methods and Input Data 
 
Site Description 
 
In this study, we conduct our analysis in cities across 
the United States. In particular, we started with a 
case study focused on six cities in the Midwestern 
United States: Chicago (IL), Cleveland (OH), 
Columbus (OH), Indianapolis (IN), Madison (WI), and 
Minneapolis (MN). Then, we expanded the study to 
include 40 additional cities (46 total) across the 
country. To select these cities, we initially 
requested data from 86 cities in the U.S., which were 
selected based on the population in 2018. In other 
words, we chose cities that had at least 250,000 
residents in 2018. This allowed us to focus on the 
largest cities in the country, which are where the 
majority of water and electricity are consumed, and 
thus are likely to experience significant changes 
under climate change. Ultimately, of the 86, we 
were only able to obtain adequate water and 
electricity demand data from the 46 cities used in 
the final analysis. 

 
Map of all cities considered in this analysis. Cities in green 
are those from which we received data. Cities in light blue 
are those that we requested to provide data, but 
ultimately did not get any. 

Input Data 
 
The data collected for this study included two 
primary categories: demand data and climate data. 
The demand data was obtained through local 
utilities, while the climate data was collected from 
a variety of sources, including weather towers, 

renalaysis datasets, and earth system models (ESMs). 
In particular, the electricity demand data was 
collected through the U.S. Energy Information 
Administration (EIA), which manages a database of 
monthly electricity consumption by utility across the 
U.S.60 The water demand data, on the other hand, 
was collected via freedom of information act (FOIA) 
requests made directly to the utilities of the select 
cities. Not all of the 86 cities were able to provide 
the requested data, thus this dataset became the 
limiting factor for which cities were included in the 
final analysis. Both demand datasets were collected 
at the monthly level from 2007 through 2018. 
Further, both demand datasets were normalized by 
service population and the trends adjusted following 
a statistical method45. This method removes the 
technodemographic trends from the demand data, 
allowing us to focus on the climate-sensitive portion 
of the demand. 
 
The climate data were collected from multiple 
sources. First, we collected data from the U.S. 
National Centers for Environmental Information 
(NCEI), which maintains a database of data collected 
from weather towers across the country61. In this 
case, we collected the tower-based data only for six 
cities in the Midwest, which served as our initial case 
study. To collect data across the U.S., we leveraged 
the North American Regional Reanalysis (NARR) 
database, which is a gridded dataset that covers 
much of North America53. This dataset was used to 
expand the initial study to the entire U.S. Finally, we 
obtained future climate projections through the 
CMIP5 suite of ESMs. In particular, we collected data 
form five ESMs: (1) Geophysical Fluid Dynamics 
Laboratory - Earth Systems Model (GFDL-ESM2M); (2) 
Hadley Centre Global Environment Model (HadGEM2-
ES); (3) Institut Pierre Simon Laplace Model (IPSL-
CM5A-LR); (4) Model for Interdisciplinary Research 
on Climate - Earth Systems Model (MIROC-ESM-
CHEM); and (5) Norwegian Earth System Model 
(NorESM1-M). For the ESMs, we considered two key 
scenarios: RCP2.6 and RCP8.5 to provide a range of 
possible futures under climate change. In particular, 
we collected the ESM data through the Inter-Sectoral 
Impact Model Intercomparison Project (ISI-MIP)21. 
The data were downscaled and bias-corrected at a 
0.5° resolution using a trend-preserving approach62. 
Across all these sources, we collected several key 
variables, including dry bulb temperature, dew point 
temperature, wet bulb temperature, relative 
humidity, wind speed, and precipitation. The 
observational data were collected at the daily level 
from 2007 through 2018, and later aggregated to 
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monthly values (minimum, maximum, mean, and 
total, where applicable) to match the demand data. 
 

Methods 
 
Supervised Learning Theory: The primary 
methodology discussed in this report was a ML 
algorithm that falls into the category of supervised 
learning. The goal of any supervised learning 
algorithm is to predict some value(s), in this case 
water and electricity demand, given a series of input 
variables (here, these were the climatic variables). 
Mathematically, supervised learning algorithms 
follow Equation 1 where y is the response variable(s), 
f(X) is the function that connects the predictors (X) 
to the response variable, and ε is the irreducible 
error (𝜺𝜺 ~ 𝑵𝑵(𝟎𝟎,𝝈𝝈𝟐𝟐)). Following this equation, the 
goal of any supervised learning algorithm will be to 
find the function, f(X), that minimizes the error 
between the predicted and actual response variable 
values, y. 
 
𝒚𝒚 = 𝒇𝒇(𝒙𝒙) +  𝜺𝜺                                                                   (𝟏𝟏)  

 
In this study, we leveraged a multi-outcome tree-
based supervised learning algorithms. Tree-based 
algorithms are a popular non-parametric modeling 
technique, as they able to balance high predictive 
accuracy with easier interpretation than a number of 
other “black box” models (e.g., neural 
networks)24,63. In this report, we leverage 
multivariate tree boosting to conduct the analysis, 
which we describe in greater detail below. 
 
Multivariate Tree Boosting: The framework 
presented in this report was based on an ensemble-
of-trees ML algorithm, multivariate tree boosting64. 
The strength of this algorithm is in its ability to 
simultaneously predict multiple response variables 
by accounting for the covariance between each 
response variable to better estimate the complex 
interactions between real systems. This is an ideal 
algorithm for estimating the water-energy nexus, as 
the two systems are highly interconnected. 
 
In particular, multivariate tree boosting leverages 
the gradient descent boosting meta-algorithm, 
which works by sequentially fitting decision trees, 
with each new tree accounting for information from 
previous tree to improve the prediction65. In this 
case, the algorithm is aiming to minimize error and 
maximize covariance discrepancy between the 
previous and current decision trees. Thus, each 
subsequent tree builds off the previous one to 
improve the prediction accuracy (i.e., minimizing 

error), while ensuring the predictors that account for 
the greatest covariance in the response variables are 
selected (i.e., maximizing covariance 
discrepancy)64.  
 
Variable Selection: An ongoing challenge with ML 
is overfitting models. In other words, if we train a 
model too closely to the training data, that model is 
unlikely to perform well in new situations with 
previously unknown data. To avoid this pitfall, it is 
generally recommended to maintain simplicity in the 
model architecture wherever possible. One way to 
do this is to conduct variable selection to remove 
predictors that are not contributing to the predict 
accuracy. In this study, we conducted variable 
selection based on variable importance (e.g., how 
important is the predictor to obtaining a high 
accuracy). To this end, we used a backward step 
variable selection process to keep the variables that 
were contributing most to the predictive accuracy, 
leaving about 4-6 variables per location out of the 
original 17. In addition to reducing the complexity of 
the model, variable selection also improves 
interpretation. 
 
Modeling Framework: Once we collected and pre-
processed our data and conducted variable 
selection, we began the modeling process. This 
process involved three key steps: (1) model training 
and testing; (2) model evaluation; and (3) 
projections into the future. The first step was 
conducted through randomized cross-validation, 
such that a different set of data was held out of the 
training and used to test the ability of the model to 
predict based on previously unknown data. This 
process is repeated until data point has been 
included in the test data once. For example, a 5-fold 
cross-validation process would involve splitting the 
data into five sets, each of which would be 
considered the test set once over 5 iterations. 
 
Following the cross-validation, the model 
performance is evaluated using a quantitative 
measure, such as root mean squared error or mean 
absolute error. In this study, we leveraged 
normalized root mean squared error (NRMSE), which 
is represented mathematically in Equation 2 below. 
This measure normalizes the root mean squared 
error, such that the error can be represented as a 
percentage. Further, NRMSE is an absolute measure 
in that it does not require a comparison to other data 
to known if it is “good” or “bad”. Rather, the closer 
NRMSE is to zero, the more accurate the prediction, 
regardless of units. We use this measure to discuss 
the prediction error on the test set, or the out-of-
sample error. 
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𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 =  
�∑(𝒚𝒚𝒊𝒊 − 𝒚𝒚�𝒊𝒊)𝟐𝟐

𝒏𝒏
𝒚𝒚𝒎𝒎𝒎𝒎𝒙𝒙 − 𝒚𝒚𝒎𝒎𝒊𝒊𝒏𝒏

                                               (𝟐𝟐)  

 
 

Finally, in the model projection step, we used the 
historical data from the ESMs (1971-2000) as a 
reference to build our baseline estimates of water 
and electricity demand. Then, we leveraged future 
ESM-derived data from 30-year periods in which the 
ESM projected the world would cross key 
temperature thresholds: 1.5, 2.0, and 3.0°C above 
pre-industrial levels. These 30-year periods were 
determined through a time-sampling approach20 that 
has been implemented in various applications11,13,66. 
In particular, the 30-year periods were identified for 
each of the 10 ESM-RCP combinations (i.e., 5 ESMs x 
2 RCPs) in which the global mean temperature 
increased by 1.5, 2.0, and 3.0°C, relative to the pre-
industrial estimation. The data from each of these 
10 ESM-RCP scenarios was used as input variables 
into the model to project the coupled water and 
electricity demand. Then, we estimated the percent 
change between our historical baseline period and 
the future period. This process, including the steps 
discussed above. 
 
In the expanded study that considered the entire 
U.S., we did not leverage ESM data directly. Instead, 
we used contemporary climate analogs as a proxy for 

the ESM-derived climate projections. The dataset we 
used included analogs for 540 cities across North 
America47. The analogs were calculated based on the 
similarity between 12 key climate variables 
(minimum temperature, maximum temperature, and 
precipitation for each season) in the city of interest's 
future climate and the analog city's current climate. 
The analysis was conducted by leveraging 27 ESMs 
and an ensemble mean, leading to 28 possible 
analogs for each city. Throughout this report, we 
leveraged the ensemble mean analog. 
 
As an example, New York City has a mean ensemble 
analog of Jonesboro, Arkansas. This means that using 
the ensemble of 27 ESMs, the future climate of New 
York City was the most similar to the climate of 
present-day Jonesboro. For this report, we then 
using the NARR data from present-day Jonesboro as 
a proxy for ESM-derived data for future New York 
City. Through this process, we were able to obtain 
estimates of the future climate for 46 U.S. cities 
without running the ESMs ourselves, thus creating a 
methodology that could be applied across the 
country in small communities without access to high 
fidelity ESM data. Once we obtained the climate 
analog-based climate data, we followed a similar 
process described above. 
  

Schematic of the model framework used in this study. 
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