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Abstract 
 
We extend an earlier model of innovation dynamics based on invasive percolation by adding 
endogenous R&D search by economically motivated firms. The {0,1} seeding of the technol-
ogy lattice is now replaced by draws from a lognormal distribution for technology ‘difficulty’. 
Firms are rewarded for successful innovations by increases in their R&D budget. We compare 
two regimes. In the first, firms are fixed in a region of technology space. In the second, they 
can change their location by myopically comparing progress in their local neighborhoods and 
probabilistically moving to the region with the highest recent progress. We call this the mov-
ing or self-organizational regime. We find that as the mean and standard deviation of the log-
normal distribution are varied, the relative rates of aggregate innovation switches between the 
two regimes. The SO regime has higher innovation rates, other things being equal, for lower 
means or higher standard deviations of the lognormal distribution. This results holds for in-
creasing size of the search radius. The clustering of firms in the SO regime grows rapidly and 
fluctuates in a complex way around a high value which increases with the search radius. We 
also investigate the size distributions of the innovations generated in each regime. In the fixed 
one, the distribution is approximately lognormal and certainly not fat tailed. In the SO regime, 
the distributions are radically different. They are much more highly right skewed and show 
scaling over at least two decades with a slope of almost exactly one, independently of parame-
ter settings. Thus we argue that firm self-organization leads to self-organized criticality. 
 
Keywords: innovation, percolation, search, technological change, R&D, clustering, self-
organized criticality 
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1. Introduction  
 
The paradoxical characteristic of innovations is that their nature, significance and date of arri-
val are intrinsically unknowable in advance – if we knew them in detail, then the innovation 
would in effect have already happened. It is this property of intrinsic uncertainty that makes 
innovations so central and different from other factors in the theory of long-term economic 
evolution. On the assumption of total ignorance and independence, the natural approach 
would be to regard discrete innovations as generated by a simple stochastic point process such 
as the time-homogeneous Poisson. At the same time we know that technologies are not picked 
out of a hat at random times in random orders – to some extent there is a logical order in 
which they can be discovered, and they build on each other. Modern computers could not ex-
ist without a mastery of electronics (although Babbage tried and failed to make a purely me-
chanical one in the 19th century), electronics without a mastery of electricity, and electricity 
without the metallurgical skills necessary to make wires. Thus we shall argue in the follow-
ing, based both on empirical evidence and a theoretical model, that the innovation process, 
while highly uncertain and stochastic, is still more structured in important respects than such a 
null hypothesis would suggest.  

While the study of the statistical properties of the innovation process is scientifically 
interesting in its own right, it also has important implications for economic theory and innova-
tion management. If innovations are drawn from a highly skewed and even infinite variance 
process (Pareto), then economic growth may be even more erratic than if they are of constant 
‘size’ but generated by a Poisson process (see Sornette and Zajdenweber 1999 on the former 
case, Silverberg and Lehnert 1996 on the latter). And if they are drawn from an infinite vari-
ance and even infinite mean process, than R&D risk management and portfolio policy are 
confronted with such high risk that the standard tools of capital asset management theory are 
inapplicable (Scherer and Harhoff 2000). 

Three earlier papers (Silverberg, 2002; Silverberg and Verspagen, 2005 and 2003a) 
examined a model based on percolation theory that takes several stylized facts about innova-
tion into account. In Silverberg and Verspagen (2003a), we summarized the stylized facts 
about innovation under three types of ‘clustering’. First (major) innovations tend to be clus-
tered in time: they “are not evenly distributed in time, but … on the contrary they tend to clus-
ter, to come about in bunches, simply because first some, and then most firms follow in the 
wake of successful innovation” (Schumpeter, 1939, p. 75, see also, Silverberg and Verspagen 
2003b). Second, innovations are clustered in ‘technology space’ (a concept that will be opera-
tionalized in terms of our model). In the economic literature analyzing the development of 
technological change there are numerous suggestions that the innovative process follows rela-
tively ordered pathways that can be measured ex post in technology characteristics space. Ex-
amples of propositions in this direction are Nelson and Winter’s (1977) natural trajectories, 
Sahal’s (1981) technological guideposts, and Dosi’s (1982) technological paradigms. Empiri-
cally oriented contributions that illustrate the point are, e.g., Foray and Grübler (1990), Savi-
otti (1996) and Frenken and Leydesdorf (2000). Third, recent literature such as Scherer 
(1998), Harhoff, Narin, Scherer and Vopel (1999), and Scherer, Harhoff and Kukies (2000), 
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suggests that the distribution of innovation sizes, as captured by some measure of economic 
returns to R&D investment, is highly skewed, with most innovations having low or negative 
returns but with a highly skewed tail extending into the region of extremely high rates of re-
turn. The same tendency can be observed using the data compiled by Trajtenberg (1990) for 
the ‘value’ of patents proxied by the number of patent citations. These data suggest that the 
distribution of innovations may follow a power law, at least in the tails (cf. Silverberg and 
Verspagen 2004).  
 Our earlier model was aimed at explaining these stylized facts from the simplest pos-
sible assumptions regarding the nature of the innovative process. Thus we abstracted from any 
economically motivated, active search process. The earlier model did have ‘research’ in the 
form of search in technology space, but the efforts put into this process were completely ex-
ogenous, both in terms of their size (“amount of expenditures”) and direction (selection of 
promising avenues for research). It is the aim of this paper to introduce a more elaborate, eco-
nomically motivated basis for technological search, and to investigate its implications for the 
stylized facts of innovation that our model addresses.  
 The process of technological search will be motivated by two crucial economic fac-
tors. The first concerns the way in which firms1 select the parts of technological space they 
want to search. Each of the firms in the model can only address a (small) part of the techno-
logical space (we exogenously set a search radius for all firms), but we now allow the firms a 
certain latitude in determining the search region themselves. This implies that, contrary to our 
earlier model, search may now be concentrated in selected neighbourhoods, when firms col-
lectively decide to locate their R&D activities there. Other parts of technological space may 
conversely be abandoned. Although firms can, in principle, move freely through technology 
space, the model does assume that there are costs associated with this. Although we do not 
model such costs explicitly, we do assume that relocation of search in technology space is the 
result of two counteracting tendencies. On the one hand, firms want to move to the places 
where technological opportunities seem to be largest, but, on the other hand, they also tend to 
stick to locations that they know from previous experience (something Nelson and Winter 
1977 termed ‘local search’). 
 The second assumption consists of introducing a positive feedback resulting from suc-
cessful innovations. Firms that realize innovations will generate resources to invest in new 
R&D efforts in the next period proportional to their success. Although in the real world finan-
cial markets may also reward (economically) unproven innovations (venture capital), it is fair 
to say that in many cases ‘success breeds success’ in innovative activity. This is what Winter 
(1984) has called a “routinized” regime of innovation 
 In Section 2 we formally describe this new part of the model, as well as the basic 
structure retained from the previous version. This section also discusses our approach to mod-
eling technology space, based on percolation theory. Section 3 describes some of the results 
of the model. Although the model has relatively few parameters, the total parameter space is 

                                                           
1 We use this term to describe the abstract agents that operate in our technological space, but our model only 
addresses the R&D function of these agents. We ignore various aspects of firm behaviour that would normally 
be the subject of economic models, such as production, sales, investment and firm growth. 
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large, and we have only just begun to analyze it in a systematic way. We focus here on com-
paring the fixed firm regime with the self-organizational one with moving firms with respect 
to several indicators. In particular the size distribution of innovations is shown to change radi-
cally between the two regimes. The results are summarized and directions for further analysis 
are outlined in the concluding section 4. 
 
2. The model 
 
2.1. Technology space 
 
Our probabilistic model of innovation is an elaboration of the model in Silverberg and Ver-
spagen (2005). As in the original model, the present model hinges on two essential properties. 
First, technologies constitute a discrete topological space with a neighborhood structure re-
flecting their technological interrelatedness, and second, over time technologies can only 
come ‘online’ by becoming contiguous to previously operational technologies, even if R&D 
search takes place in a more ‘leapfrogging’ or farsighted manner. 

For simplicity, consider a lattice, unbounded in the vertical dimension, anchored on a 
baseline (or space), with periodic boundary conditions in the horizontal dimension. The hori-
zontal space represents the universe of technological niches, with neighboring sites being 
closely related. While the technology space is represented here and in the following as one-
dimensional, it can easily be generalized to higher dimensions or different topologies. The 
vertical axis measures an indicator of performance intrinsic to that technology and could also 
be conceived as multidimensional. For simplicity we will restrict ourselves to a two-
dimensional lattice in the following. 
 A lattice site aij can be in one of three states: 0 or not yet discovered, 1 discovered but 
not yet viable, and 2, discovered and viable. Compared to the original version of the model, 
the present model has one fewer state. Whereas Silverberg and Verspagen (2005) distin-
guished between sites that were potentially technologically possible and those that were ex-
cluded by the laws of nature, the present model does not make this distinction. No sites are 
excluded by the laws of nature, but sites do differ with regard to the difficulty of discovering 
them. Some sites are easy to discover, others more difficult if not nearly impossible. 
 A site may become discovered, i.e., move from state 0 to 1, by means of repeated ef-
fort by the agents searching in its region of the technology lattice. Agents invest R&D with 
the aim of discovering the site. Each site on the lattice is randomly initialized with a ‘resis-
tance’ value, which we denote by qij. This value is drawn from a lognormal distribution with 
mean <q> and standard deviation σ. When an agent invests b units of R&D with the aim of 
discovering the site, the resistance value is diminished according to the following process: 
 

qij,t+1.= qij,t – b ω, 
 
where ω is a random variable drawn from a uniform distribution on [0, 1) (this represents the 
stochastic nature of the R&D process), and the subscripts t and t+1 denote the value of the 
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resistance factor before and after the agent’s R&D project. A site becomes an invention with 
state 1 when qij becomes zero or negative. 
 A site moves from state 1 to 2, i.e., from discovered to viable (invented to innovated), 
when there exists a contiguous path of discovered or viable sites connecting it to the baseline. 
The neighborhood we shall use is the von Neumann one of the four sites top, bottom, right 
and left {ai±1,j, ai,j±1}, with periodic boundary conditions horizontally. The intuition here is 
that a discovered technology only becomes viable or operational when it can draw on an un-
broken chain of supporting technologies already in use. Until such a chain is completed, the 
technology is still considered to be under development – it is still an invention, not an innova-
tion.  
 At any point in time t a best-practice frontier can be defined consisting of the highest 
sites in state 2 for each baseline column (of which there are Nc): 

2).|(max)( where},,1)),(,{()( ==== i,jc ajijNiijitBPF  
If there is no viable site in column i we set j(i)=-1.  
 
2.2. The firm-based R&D process 
 
An innovation is defined as a jump in the BPF in the vertical dimension in a single time pe-
riod. The size of the innovation, denoted by s, is defined as the number of levels (rows) that 
the frontier has moved upward in an individual column. The payoff of an innovation will be 
assumed  proportional to s. The firm’s R&D budget consists of a fixed part, which is equal for 
all firms and all periods, and a part deriving from the payoffs to previous innovations. This is 
formulated as follows:  

∑ π+β= −
k

tkt ,1,sB  

where Bt is the total R&D budget that the firm spends in period t, β is the base part of the 
R&D budget, sk,t-1 is the size of the firm’s innovation (if any) in column k that the firm made 
when it last had a turn at performing R&D, and π is the payoff per ‘unit’ of innovation, and k 
is summed over all columns in the firm’s search neighborhood. If the firm was unsuccessful 
in its previous R&D round (no innovations were realized), its R&D budget falls to β. 
 The firm operates from a single position (site) in the lattice, which is updated periodi-
cally. Its search neighborhood consists of a (diamond-shaped) neighborhood of radius m in 
the ‘Manhattan’ metric induced by the neighborhood relation centered around the firm’s pre-
sent site. This neighborhood contains 2m(m+1) points. The R&D budget B is distributed 
equally over all sites in the neighborhood, irrespective of whether or not they have already 
been discovered. Thus, the R&D budget available for a single site is b = B / 2m(m+1). 
 Since R&D is aimed at the local environment of the firm, an important element of the 
model is how firms determine their position in technology space from which R&D is under-
taken. Just before a firm starts an R&D cycle to search its local neighborhood, it may move its 
position on the lattice. We now differentiate between two distinct regimes of firm behavior. If 
we are in the fixed firm regime, the firm simply moves vertically in its present column to the 
present level of the BPF that it inherits from the last innovator. In the moving firm regime, the 
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firm also first moved vertically to the BPF, but then also examines the heights of the points on 
the BPF in the columns within a radius of m from its current column. It then decides probabil-
istically whether to move to one of these columns and then to the associated point on the BPF 
according to the following calculation. For each column j in its m-radius column neighbor-
hood, we calculate a value ,ij hh

j eu −= where hj is equal to column j’s BPF technological level 

(i.e., height on the lattice) and hi is the current level of the firm. We include the possibility 
that the firm stays where it is. We calculate the probability pij that the firm will move to col-
umn j on the BPF from its current column i (or stay where it is, with probability pii) as 

., ∑==
j

j
j

ij uU
U
u

p  

In this scenario, firms may wind up concentrated in a small number of regions and leave other 
regions of technology space completely unpopulated. 
 In both scenarios, we initially populate every column on the lattice with exactly one 
firm. We also assume that before a firm comes up ‘to bat’ in an innovation round, it first ad-
vances to the BPF of its current technology column. Thus firms benefit from an interfirm 
technology externality after one innovation period. 
 After the firm moves, it performs R&D in its (new) local neighborhood. Payoffs are 
awarded (added to the R&D budget of next period) after this R&D process, and the global 
BPF is updated. The fact that search continues to take place below the BPF means that the 
path connecting sites on the frontier to the baseline may shorten over time as ‘shortcuts’ and 
missing links are discovered. We regard this as one way of representing incremental innova-
tion, but we will not deal with this aspect here.  
 
 
2.3. Innovation dynamics 
 
A discovered site need not initially connect up with the operational network. It is this fact that 
permits innovations of variable length (as measured by the jump in y they entail) to occur 
spontaneously. Thus we obtain a natural explanation of innovation clustering (but of the ran-
dom kind), as shown in Figure 1. This happens when a disjoint extended network of discov-
ered but not yet operational sites is finally connected to the technological frontier, and/or 
when an ‘overhanging cliff’ advances laterally, pulling up the BPF at neighboring sites by in-
crements that can be much larger than m, the search radius, and are in fact unbounded from 
above. 
 The basic unit of time in the model is one R&D cycle by one firm. At the beginning of 
each cycle, a single firm is drawn randomly from the population. By convention, we set the 
number of firms equal to the number of columns in the lattice, and at the beginning of each 
run, one firm is placed at the baseline of each column of the lattice.  
 The computer implementation of the model is illustrated in Figure 2, which is a screen 
shot of the user interface in interactive mode. The rectangle on the upper right shows the state 
of the lattice at this point of time. Grey dots represent undiscovered lattice sites (state 0), with 
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darker colors indicating higher values of q. Green sites represent discovered but not yet viable 
sites (state 1), and yellow sites are viable technologies (state 2), i.e., discovered and connected 
to the baseline. The red line represents the best-practice frontier (BPF) around which search is 
taking place in a band of radius 6. A typical pattern is shown of ‘overhanging cliffs’ of yellow 
sites on the left and in the middle. 
 
3. Simulation results 
 
In the following, we will compare the behavior of the model with firms either evenly distrib-
uted over columns and fixed or self-organizing and locally moving to more attractive sites in 
the manner described above. Figure 3 shows the average rate of innovation generated per pe-
riod (defined as the area swept out by the BPF per period) in runs of 15.000 periods for the 
two regimes as a function of the mean <q> of the lognormal distribution for various values of 
the search radius m (ten runs per parameter value are generated with different random seeds, 
with σ=2 and π=1). A typical pattern is evident in all panels. While the innovation rate falls 
off weakly with <q> for fixed firms, it declines much more rapidly for moving ones, but from 
a higher initial level. This results in a pattern of innovation rate switching, with self-
organizing firms being more ‘innovative’ for low values of <q> but much inferior for higher 
values. Evidently, when innovations are generally more difficult to make, the herding behav-
ior of the self-organizing firms is counterproductive. When the landscape is generally ‘thin-
ner’, in contrast, the herding behavior rather successfully identifies and exploits the avenues 
of easy progress in the landscape. Not unexpectedly the rate of innovation of both regimes 
increases with the search radius m, a result already known from the original percolation 
model.  
 A rather similar result holds for fixed <q> but variable σ, as shown in Figure 4 for 
<q>=2, m=3, and five runs per data point. Here the self-organizing regime proves to be supe-
rior for larger values of σ and inferior for smaller ones. The crossover point is just visible on 
the right hand side. In this model σ plays a role a bit like the percolation probability in the 
original model, with higher values of σ indicating a rougher landscape. The crossover point 
shifts downward as we decrease <q>, as can be seen in Figure 5 for <q>=0.4 (only one run 
shown per data point).  
 A similar crossover occurs if we vary the payoff rate π to successful innovations (Fig-
ure 6, with only one run per data point). Larger payoffs evidently favor the self-organized re-
gime, so that if firms receive greater individual rewards for innovation, it pays both individu-
ally and collectively for them to choose their location in technology space, even if this carries 
the danger of duplication of effort.  
 Figure 7 displays how the firms cluster over time in the self-organized regime by plot-
ting the clustering index d as a function of time, where d is defined as 

nnd
cN

i
i −=∑

=1

2
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with ni the number of firms in the ith technology column and n the total number of firms 
(which by assumption is equal to the total number of columns Nc). From an initial value of 
zero for uniformly distributed firms it climbs to a high ‘steady state’ value within about 4000 
periods but thereafter displays fluctuations with more ‘long memory’ than just a simple sto-
chastic process would suggest. Figure 8 shows the final values of d after 15,000 periods for 
different values of <q> and search radius m. The average values over ten runs are rather stable 
for small values of m, but increase nearly linearly with <q> for higher values of m. A trough 
around <q>≈0.6-0.9 also appears to be present. 
 In Figure 9 we compare the innovation size distributions resulting from a run with 
fixed firms and the equivalent run with moving ones (<q>=0.2, σ=4, m=3, with the first 5,000 
periods deleted to eliminate the effects of transients). These are Pareto plots showing the 
number of observations greater than or equal to a certain size, on a double-log scale. Pareto-
distributed observations will fall on a straight line in such a plot. For fixed firms we observe a 
definite curvature (indicating that, while the distribution is highly skewed, it is not fat-tailed 
and more resembles a lognormal distribution). In contrast, in the moving firm regime we ob-
serve a striking region of linearity over at least two decades of observations. The slope of this 
curve is almost exactly -1, as indicated by doing an ordinary least squares fit to the observed 
curve. The tail index α can more properly be calculated by making use of its maximum likeli-
hood estimator due to Hill (1975). This is defined using the largest k  
values of the rank order statistics of the observations as follows: 

Figure 10 shows the Hill plots of the tail index for the fixed and the moving firm cases, re-
spectively. The monotonic decline of the Hill plot for the former indicates that it is not fat 
tailed. The near-perfect plateau at a value of α of almost exactly one between the 100th and 
nearly the 10,000th largest observations is striking. However, there are significant and system-
atic deviations from linearity for both the smallest and very largest innovations. 
 What is most remarkable about this scaling behavior in the self-organized regime is 
that it appears to be insensitive to the values of the principal parameters. The panels of Figure 
11 and 12 display a selection of Pareto plots for various constellations of parameter values. 
The general form remains unchanged: an intermediate region of very precise scaling behavior 
over two decades with tail index one. Because this regularity emerges without the need to 
tune the system to a critical value of an exogenous parameter, as would be the case in a pure 
percolation model, it appears to be an instance of self-organized criticality. This is perhaps not 
completely surprising, since in some respects our model resembles the well-known model of 
interface growth due to Sneppen (1992).2 Why the tail index always assumes a value of one 
remains something of a mystery. However, it falls into the same ballpark as the empirical es-
timates of the tail index of monetary measures of the returns to innovation found in Silverberg 
and Verspagen (2004), where values near or just below one were observed. Of course our 
                                                           
2 It differs from the Sneppen model in that interface growth (the advance of the BPF) takes place at sites selected 
by a local, probabilistic ‘extremal’ rule (firms move only locally and with a probability less than one to the most 
active previous sites) rather than employing straightforward extremal dynamics. 
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=
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measure of innovation size does not map directly to any of the monetary measures employed 
in the empirical literature. Nevertheless, this congruence is intriguing. 
 Another example of scaling behavior emerges when we plot the average innovation 
rate against the variance of the BPF realized after 15,000 periods (the latter is a measure of 
the extent to which different technological categories evolve at different rates). There is a 
generally positive relationship between these two values for various values of <q> and ran-
domizations (holding other parameters fixed), as one would expect, but no scaling (Figure 
13). When we vary σ, however, leaving <q> fixed, this changes radically (Figure 14). Even in 
the case of fixed firms, where the range of variation is quite limited, scaling is evident. This is 
even more the case for moving firms, where the range of variation is quite broad. For com-
parison, if the individual column heights were evolving according to a random walk with drift 
(assumed identical and independently distributed across columns), then the variance would be 
a linear function of the mean rate of advance. 
 
 
4. Conclusions and future research 
 
In this paper we have introduced endogenous R&D search by economically motivated firms 
in a percolation model of innovation dynamics. A previous model without endogenous R&D 
search has already proven to be useful in explaining some of the stylized facts about innova-
tion, specifically with regard to the temporal clustering of innovation and the skewed nature 
of innovation size distributions. The introduction of the ‘Toyota’ landscape in place of the bi-
nary percolated technology landscape does not seem to change the basic properties of the 
model in terms of its ability to generate these stylized facts. However, the ability of firms to 
move and redeploy their R&D efforts as a result of previous advances on the landscape intro-
duces a quality of self-organization into the model. The most striking change in comparison 
with fixed firms is a much more highly skewed distribution of innovations and scaling over a 
considerable range, with a characteristic tail index of one. While the moving firms ostensibly 
display a higher degree of ‘rationality’ than the fixed firms, collectively this freedom is not 
always advantageous. In particular, for higher values of the average difficulty of the landscape 
(<q>) or smoother landscapes (lower σ), or very low rewards to previous success (low payoff 
parameter π), it is collectively more sensible to retain the distributed search of fixed firms 
than try to exploit the ability of moving firms to independently focus on hot ‘lodes’ of techno-
logical richness (whether this is individually rational for firms is another question). When the 
world has the opposite character, however, for example when technologies vary greatly in the 
ease with which they can be developed, but overall are not too difficult to uncover, and previ-
ous success is sufficiently rewarded, self-organization yields significant payoffs in terms of 
more rapid rates of technical change. In this respect our model offers food for thought regard-
ing the ‘rationality’ of such phenomena as the Internet bubble and gold rushes. 
 The rate at which firms actually change their locations and move toward more attrac-
tive sites can be tuned using an additional parameter β in the multinomial transition probabili-
ties between the current column i and a neighboring column j: 
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By varying β we can make firms more or less ‘rational’ or responsive to disparities in the state 
of neighboring columns in technology space. The parameter β would play a role similar to 
that in the Brock and Hommes (1998) model of routes to chaos in financial market with het-
erogeneous agents. What effect this might have in the context of our model is a subject for 
future research. 
  
 
References 
 
Bak, P., 1996, How Nature Works: The Science of Self-Organized Criticality, New York: 

Springer-Verlag. 
Brock, W.A. and Hommes, C.H., 1998, ‘Heterogeneous beliefs and routes to chaos in a sim-

ple asset pricing model’, Journal of Economic Dynamics and Control, 22: 1235-1274. 
Dosi, G., 1982, "Technological Paradigms and Technological Trajectories", Research Policy, 

11: 147-162. 
Foray, D. and Grübler, A. 1990, ‘Morphological analysis, diffusion and lock-out of 

technologies: ferrous casting in France and the FRG’, Research Policy, 19: 535–550. 
Frenken, K and Leydesdorff, L., 2000. ‘Scaling trajectories in civil aircraft 1913–1997’, 

Research Policy, 29: 331–348. 
Harhoff, D., Narin, F., Scherer, F. M. and Vopel, K., 1999, "Citation frequency and the value 

of patented inventions", Review of Economics and Statistics, 81: 511-515. 
Hausman, J., B. H. Hall and Z. Griliches 1984. “Econometric Models for Count Data with an 

Application to the Patents-R&D Relationship.” Econometrica, 52: 909-938. 
Hill, B. M., 1975, ‘A Simple General Approach to Inference about the Tails of a Distribu-

tion’, The Annals of Statistics, 3: 1163-1174. 
Nelson, R.R. and Winter, S.G., 1977, “In Search of a Useful Theory of Innovation”, Research 

Policy, 6: 36-76. 
Sahal, D., 1981, Patterns of Technological Innovation, New York: Addison-Wesley. 
Saviotti, P.P. 1996. Technological Evolution, Variety and the Economy, Cheltenham and 

Brookfield: Edward Elgar. 
Scherer, F. M., 1998, ‘The Size Distribution of Profits from Innovation’, Annales d'Economie 

et de Statistique, 49/50: 495-516. 
Scherer, F.M. and Harhoff, D., 2000, “Technology Policy for a World of Skew-Distribution 

Outcomes”, Research Policy, 29: 559-566. 
Scherer, F.M., Harhoff, D., and Kukies, J., 2000, “Uncertainty and the Size Distribution of 

Rewards from Innovation”, Journal of Evolutionary Economics, 10: 175-200. 
Schumpeter, J. A. 1939. Business Cycles: A theoretical, historical and statistical analysis of 

the capitalist process. New York, McGraw-Hill (page numbers quoted in the text refer to 
the abridged version reprinted in 1989 by Porcupine Press, Philadelphia). 



 11

Silverberg, G., 2002, “The Discrete Charm of the Bourgeoisie: Quantum and Continuous 
Perspectives on Innovation and Growth”, Research Policy, 31: 1275-1289. 

Silverberg, G. and Lehnert, D., 1996, ‘Evolutionary Chaos: Growth Fluctuations in a 
Schumpeterian Model of Creative Destruction’, in Barnett, W. A., Kirman, A. and 
Salmon, M., (eds), Nonlinear Dynamics in Economics, Cambridge: Cambridge University 
Press. 

Silverberg, G. and B. Verspagen 2003a, “Brewing the future: Stylized facts about innovation 
and their confrontation with a percolation model,” Paper prepared for the EMAEE 
Conference, Augsburg, April 10-12, 2003, ECIS Working Paper 80. 

Silverberg, G. and B. Verspagen, 2003b, ‘Breaking the Waves: a Poisson Regression Approach 
to Schumpeterian Clustering of Basic Innovations', Cambridge Journal of Economics, 27: 
671-693. 

Silverberg, G. and B. Verspagen, 2004, “The size distribution of innovations revisited: an 
application of extreme value statistics to citation and returns measures of patent 
significance”, Maastricht: MERIT Research Memorandum 2004-021, forthcoming in 
Journal of Econometrics. 

Silverberg, G. and B. Verspagen, 2005, “A Percolation Model of Innovation in Complex 
Technology Spaces,” Journal of Economic Dynamics and Control, 29: 225-244. 

Sneppen, K., 1992,  ‘Self-Organized Pinning and Interface Growth in a Random Medium’, 
Physical Review Letters, 69: 3539-3542. 

Trajtenberg, M., 1990, “A Penny for your Quotes: Patent Citations and the Value of 
Innovations”, Rand Journal of Economics, 21, 172-187. 

Winter, S.G., 1984, ‘Schumpeterian Competition in Alternative Technological Regimes’, 
Journal of Economic Behavior and Organization 5:287-320. 



 12

 

Figure 1 Clusters of innovations occur when disconnected islands of inventions are joined to the BPF by 
cornerstone innovations. 

 
 
 

 
Figure 2 Screenshot of the computer implementation of the model. 
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Figure 3 The innovation rate as a function of the mean of the generating lognormal distribution for four 
values of the search radius m and fixed and moving firm regimes. 
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Figure 4 The innovation rate as a function of the standard deviation of the generating lognormal distribu-
tion, five data points per value, for fixed and moving firm regimes. <q>=2, m=3. 
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Figure 5 The innovation rate as a function of the standard deviation, for <q>=0.4, m=3, one data point per 
value. 
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Figure 6 The innovation rate as a function of the payoff coefficient. <q>=0.4, σ=2, m=3, one data point per 
value. 
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Figure 7 Time series of the clustering index d for a single run with <q>=1, σ=5, m=3, π=1. 
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Figure 8 The clustering index after 15,000 periods for various values of <q> and m. σ=2, π=1, ten data 
points per value with lines representing average value. 
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Figure 9 Pareto plots of innovation size distributions for fixed (left panel) and moving (right panel) firm 
regimes. <q>=0.2, σ=4, m=3, π=1. 
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Figure 10 Hill plots for fixed (left) and moving (right) firm regimes corresponding to the Pareto plots of 
Figure 9. 
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Figure 11 Pareto plots of runs with <q>=0.4, m=3, π=1, and σ= (a) 2, (b) 3, (c) 5. 
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Figure 12 Pareto plots for <q>=0.4, m=3, σ=2, and (a) π=0, (b) π=1.9. 
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Figure 13 Scatter plot of the variance of BPF vs. innovation rate for σ=2, π=1, several values of m, and 
various values of <q> between 0.2 and 2.1, pooling multiple runs. 
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Figure 14 Scatter plot of variance of BPF vs. innovation rate for <q>=1, m=3, π=1, and various values of σ 
between 0 and 11, pooling multiple runs. 


