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Abstract 
 
This paper investigates whether the inherent non stationarity of the US 

macroeconomic time series may be entirely explained by simple stochastic non linear 

models (like GARCH). 

Applying the numerical tools of the analysis of dynamical systems to long time series 

for the US, we reject the hypothesis that the uncorrelated and homoscedastic residuals 

of the estimated GARCH models contain no structure. Contrary to the theories that 

attribute the source of the irregular behaviour of the economic system to erratic 

factors, we are not able, using GARCH models, to obtain truly random residuals. 

Given this evidence we put forward the possibility that seemingly but not truly 

random residuals could be, in principle, better controlled and forecasted in the short 

run. 
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1 Introduction1

In this paper we check whether the observed ‡uctuations in macroeconomic time
series is solely due to random exogenous shocks which perturb a stable system.
While in a previous paper (Bevilacqua and van Zon 20012) it was shown that the
uncorrelated residuals of an autoregressive linear AR model do have a structure
while they are assumed not to have any, here we show that also in the case we
model non linearities in variance by means of a GARCH model we still obtain
estimated residuals that look random but nevertheless they contain non linear
structure.

These results may suggest that there is still room to leave more about the
dynamics of macroeconomic variables and that both linear and non linear au-
toregressive models (that are based on exogenous plugged in additive noise) are
not able to fully explain the whole story when the phenomena we deal with are
intrinsically unstable.

This paper is organized in the following way: in section 2 we underline,
following the King, Rebelo and Plosser (1988 a3 , b4) papers, the intimate link
between neoclassical economic theory and autoregressive models; in section 3
we outline how we processed the updated and extended Nelson and Plosser
(1982)5 time series; in section 4 we show that there is unexplained deterministic
structure left in the autoregressive models also in the case we use a GARCH
model; in section 5 we conclude that, in line with previous results (Bevilacqua
and van Zon 2001), that both linear and non linear autoregressive models show
not to have random residuals.

2 The link between growth models and AR type
models

The research interest of neoclassical growth models of economic ‡uctuations has
been considerable after the Nelson and Plosser contribution. A number of contri-
butions based on the neoclassical model of capital accumulation with additional
persistent exogenous shocks have been proposed in the ’80s by Kydland and

1 This paper was presented at the conference ”2001 European Workshop on General Equi-
librium Theory” in Maastricht.

2F. Bevilacqua and van Zon A., Random walks and nonlinear paths in macroeconomic
time series, 2001-007 MERIT-Infonomics 2001 Research Memoranda, Maastricht.

3R. G. King, C. I. Plosser and Rebelo S. T., ”Production, growth and business cycles
I: the basic neoclassical model”, Journal of Monetary Economics, vol. 21, 1988, pp. 274-308.

4R. G. King, C. I. Plosser and Rebelo S. T., ”Production, growth and business cycles
II: new directions”, Journal of Monetary Economics, vol. 21, , 1988, pp. 309-41.

5C. R. Nelson and Plosser C.I., ”Trends and random walks in macroeconomic time
series: some evidence and implications”, Journal of Monetary Economics, vol.10, 1982, pp.
139-62.
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Prescott (1982)6 , Long and Plosser (1983)7 , Hansen (1985)8 and many others.
The perfect matching between stable long run neoclassical growth models and
AR models, has allowed economists to explain both the economic ‡uctuations
and the irreversible course of history9 .

Contrary to what was taken for granted by Friedman (1963)10 and the on-
ward research on business cycles11 , the long term e¤ect of each exogenous shock
suggest that latter have a real nature rather than a monetary one. Most of Real
Business Cycle models developed in the ’80s and ’90s attributed the cause of eco-
nomic ‡uctuations to exogenous shocks from changes in technology, preferences,
terms of trade and economic policies and not to monetary factors.

The existence of non stationarity in economic time series was con…rmed by
means of the Dickey-Fuller test12 and this result was consistent with a general
equilibrium growth theory which considered random and cumulative total factor
productivity shocks. These models, and speci…cally the neoclassical models, may
indeed easily embed random shocks in order to replicate the apparent stochastic
growth of the macroeconomic time series13 .

Given this empirical evidence, we stress the point that growth only appears
to follow a stochastic path because, as we will show in the …nal part of this

6F. E. Kydland and Prescott E.C., ”Time to build and aggregate ‡uctuations”, Econo-
metrica, vol. 50, 1982, pp. 1345-1370.

7J.B. Long and Plosser C.I., ”Real business cycles”, Journal of Political Economy, vol.
91, 1983, pp. 39-69.

8G. Hansen, ”Indivisible labor and business cycle”, Journal of Monetary Economics, vol.
16, 1985, pp. 309-327.

9 In Kydland and Prescott (1982), for example, the amplitude of ‡uctuations generated
by means of a total factor productivity random generator, surprisingly mimics the actual
dynamics of the post war US time series.

10M. Friedman, ”The role of monetary policy”, American Economic Review, vol. 58, 1963,
pp. 1-17.

11 According to E. Prescott, ”Notes on Business Cycle Theory: methods and problems”,
Siena, paper presented at ISER Conference july 1998, Friedman and Schwarz (1963) showed
that monetary shocks were the main source of business cycles ‡uctuations. The Friedman and
Schwarz thesis was widely accepted in the ’60s and ’70s because real growth models seemed
to be inconsistent with data, i.e. the monetary shocks could explain short run ‡uctuations in
a long run process of growth that was explained by economic theory.

12 For many recent related works around the non stationarity of economic time series see:
G. S. Maddala and Kim I. M., Unit roots, cointegration and structural change, Cambridge,
Cambridge University Press, 1998.

13 The apparent persistency and stochasticity in the dynamics of economic time series seems
to go back further the Nelson and Plosser 1982 paper.

R. Lucas in ”Understanding Business Cycles” edited by Brunner K., Meltzer, Stabilization
of the domestic and international economy, Carnegie-Rochester Conference Series on Pubblic
Policy, vol. 5, 1977, pp. 7-29. writes:

Technically movements about trend in gross national product in any country can
be well described by a stochastically disturbed di¤erence equation of very low order.
These movements do not exhibit uniformity of either period or amplitude, which is
to say, they do not resemble the deterministic wave motions which sometimes arise in
the natural sciences. Those regularities which are observed are in the co-movements
among di¤erent aggregative time series”.

The issue around an apparent random walk dynamics in economic time series is therefore
an old one. Nelson and Plosser have provided the statistical proof, via the Dickey-Fuller test,
that most of economic time series follow a random walk.
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paper, the residuals of …tted autoregressive models incorporate a deterministic
(and potentially forecastable) structure that is neglected by this econometric
model and by linear economic models.

In conclusion, this paper provides empirical evidence, or at least a partial
justi…cation, for non linear economic models from the Dynamic General Equi-
librium Theory put forward …rstly by Gale (1973)14 , Benhabib and Nishimura
(197915 , 198516), Benhabib and Day (1982)17 , Grandmont (1985)18 , Boldrin
and Montrucchio (1986)19 whose models are characterized by an endogenously
generated dynamics, and for the evolutionary models by Freeman, Clark and
Soete (1982)20 , Silverberg (1984)21 , Silverberg and Lenhert (1993)22 , Silverberg
and Verspagen (1998)23 in which random exogenous shocks (mutation factors)
perturb a long run trajectory of a self-organizing dynamical system.

2.0.1 Neoclassical and autoregressive models

On the one hand, it is widely accepted that neoclassical growth models (both
the old neoclassical models with exogenous technical change and the endogenous
neoclassical growth models)24 are characterized by a constant long run growth
rate for most of the macroeconomic variables such as production, consumption,
capital and investment per capita.

On the other hand, Nelson and Plosser have shown that the hypothesis that
macroeconomic variables evolve as integrated stochastic processes could not
generally be rejected. This result invalidated most of the econometric works

14D. Gale, ”Pure exchange equilibrium of dynamic economic models”, Journal of Economic
Theory, vol. 6, 1973, pp. 12-36.

15J. Benhabib and Nishimura K., ”The Hopf bifurcation and the existence and stability
of closed orbits in multisector models of optimal economic growth”, Journal of Economic
Theory, vol. 21, 1979 pp. 421-444.

16J. Benhabib and Nishimura K., ”Competitive equilibrium cycles”, Journal of Economic
Theory, vol. 35, 1985, pp. 284-306.

17J. Benhabib and Day R. H., ”A characterization of erratic dynasmics in overlapping
generation model”, Journal of Economic Dynamics and Control, vol. 4, 1982, pp. 37-55.

18J.M. Grandmont, ”On endogenous competitive business cycles”, Econometrica, vol. 53,
1985, pp. 995-1046.

19M. Boldrin and Montrucchio L., ”On the indeterminacy of capital accumulation
paths”, Journal of Economic Theory, vol. 40, 1986, pp. 26-39.

20C. Freeman, J. Clark and Soete L., Unemployment and technical innovation: a study
of long waves in economic development, London, Pinter 1982.

21G. Silverberg, ”Embodied technical progress in a dynamic economic model: the self
organization paradigm”, in R.M. Goodwin et Al., Nonlinear dynamics in economics, Cam-
bridge University Press, 1984.

22Silverberg G. and Lenhert D., ”Long waves and evolutionary chaos in a simple schum-
peterian model of embodied technical change”, Structural Change and Economic Dynamics,
vol. 4, 1993, pp. 9-37.

23G. Silverberg and Verspagen B., ”Economic growth and economic evolution: a mod-
eling perspective”, in F. Schweitzer and Silverberg G., Selbsorganisation. Jahrbuch fur
komplexitat in den natur-, sozial- und geisteswissenschaften, Berlin, Duncker & Humblot,
1998.

24 See the original papers and King, Rebelo and Plosser 1988a and 1988b.
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made until the end of the ’70s that were consistent with the Solow model with
a deterministic and constant trend with reversible monetary shocks.

However the impasse around the apparent contradiction between economic
theory and empirical evidence was readily solved by King, Rebelo and Plosser.
They showed that growth theory, which assume steady growth, may be consis-
tent with the highly irregular behavior of economic time series.

They considered the a one-commodity Solow (1956)25 and Swan (1956)26

model. The production function, the capital accumulation equation and the
resource constraint are:

Yt = AtK
1¡®
t (NXt)

® 0 < ® < 1
Kt+1 = I + (1 ¡ ±)Kt = sAtK

1¡®
t (NXt)

® + (1 ¡ ±)Kt

Ct + It = Yt

(1)

where Yt is the output at time t, Kt is the capital stock available at time
t and ± its depreciation rate, s the saving rate, N is the labor input that is
assumed constant at all time t, At is a multiplicative factor and its change
corresponds to temporary changes of total factor productivity, XtN is the labor
measured in e¢ciency units and moreover, changes of Xt modify permanently
the performance of the system, Ct is the consumption at time t27 .

Assume constant returns to scale in the production function, and constant
labor augmenting technical change at rate ¢X

X . The dynamic equation for the
capital stock may be rewritten as:

¢Kt = sAtK
1¡®
t (NXt)

® ¡ ±Kt

° = ¢kt

kt
=

sAtk
1¡®
t (Xt)

®¡±kt

kt
=

sAtk
1¡®
t (Xt)

®

kt
¡ ± where kt = Kt

N (2)

where ° is the growth rate of the capital stock kt per capita.

If sAtk
1¡®
t (Xt)

®

kt
> ±, ¢kt

kt
> 0, capital per capita grows.

Conversely, if sAtk
1¡®
t (Xt)

®

kt
< ±, ¢kt

kt
< 0, capital stock per capita decreases.

In steady state growth ¢kt

kt
is constant, and therefore Atk

1¡®
t (Xt)

®

kt
is also con-

stant. In order that Atk
¡®
t (Xt)

® is constant over time, kt and Xt must grow at
the same rate °. The output per capita is yt = Atk

1¡®
t (Xt)

® = kAtk
¡®
t (Xt)

®;
in steady state, being Atk

¡®
t (Xt)

® constant, also yt grows at the same rate of

25R. Solow, ”A contribution to the theory of economic growth”, Quarterly Journal of
Economics, vol. 70, 1956, pp. 65-94.

26T. W Swan, ”Economic growth and capital accumulation”, Economic Record, vol. 32,
1956, pp. 334-361.

27 Where the consumption decisions are based on a well behaved utility function U =
1P
t=0

¯tu (Ct; Lt) with ¯ < 1

where Lt is the leisure at time t, u the utility. 1 stands to indicate that the individual is
the in…nite lived representative.
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k, °. Consumption per capita is c = (1 ¡ s)y and therefore grows at the same
rate ° over time. In this sense, macroeconomic variables follow a (loglinear)
deterministic trend.

This view was in sharp contrast with the empirical evidence from Nelson and
Plosser (1982) who showed that the existence of a stochastic trend should not be
neglected. However it is very easy to make the basic version of the deterministic
neoclassical model stochastic.

To do that, we consider that the labor augmenting technical change occurs
stochastically as a random walk.

We have:

X¿ = X0°
¿e

¿¡1P
t=0

"t¡i ! lnX¿ = lnX0 + ¿ ln ° +
¿¡1P
t=0

"t¡i (3)

where
¿¡1P
t=0

"t¡i represent permanent shifts of lnX¿ which do not average out.

Given the dynamic equation for capital accumulation, in steady state ¢k¿

k¿

is constant and A¿k1¡®
¿ (X¿ )®

k¿
= A¿k¡®

¿ (X¿ )® is also constant. In order that
A¿k¡®

¿ (X¿ )® is constant over time, k¿ and X¿ must grow at the same stochas-

tically by °¿e

¿¡1P
t=0

"t¡i

:

ln k¿ = ln k0 + ¿ ln° +
¿¡1P
t=0

"t¡i (4a)

which (through (1) and (2)) implies that y¿ and c¿ grow in steady state also

by °¿e

¿¡1P
t=0

"t¡i

:

ln y¿ = ln y0 + ¿ ln ° +
¿¡1P
t=0

"t¡i (4b)

ln c¿ = ln c0 + ¿ ln ° +
¿¡1P
t=0

"t¡i (4c)

in virtue of the fact that ct = (1 ¡ s)yt.
In this sense, macroeconomic variables follow a stochastic trend. The above

equations may be equivalently rewritten in terms of an AR(1) process where all
the economic variables depend on their past value, the average growth rate plus
a non transitory stochastic error term. It can be easily shown that equations
(4) are the same of equations (5):

ln k¿ = ln kt¡1 + ln ° + "t (5a)28

28 In fact, ln k¿ = ln k0 + ¿ ln ° +
¿¡1P
t=0

"t¡i = ln k0 + ln °
t¡1P
i=0

(1)i +
t¡1P
i=0

(1)i "t¡i = ln k1 +

ln °
t¡2P
i=0

(1)i+
t¡2P
i=0
"t¡i = ::: = ln kt¡1+ln °+"t. In the same way, we …nd equations (5b), (5c)

and (5d).
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ln y¿ = ln yt¡1 + ln ° + "t (5b)
ln c¿ = ln ct¡1 + ln ° + "t (5c)

lnXt = lnXt¡1 + ln ° + "t (5d)

These results are in line with most of the empirical studies that con…rm:
1) macroeconomic variables follow a stochastic trend, i.e. a random walk; 2)
macroeconomic variables co-evolve together, i.e. they are cointegrated.

What is striking is that these relationship basically holds for all the time
series that were analyzed (Bevilacqua and van Zon 2001) in concordance with
the large unit root literature, except for the fact that we found some signi…cant
autocorrelation in the residuals29 .

What is implicit in the stochastic version of the neoclassical model, is that
the economic system is essentially stable. In fact, if time series follow a random
walk and we remove random innovations, we have a stationary stable system.
In the absence of technical change the system would never change, except for
the occurrence of other exogenous shocks like a change in the preferences for
instance.

If the term
¿P

t=0
"t¡i were not random, what would then be the consequences

to economic theory? The …rst consequence would be that, understanding the
deterministic non linear dynamics, we could make a better prediction than sim-
ple AR like models, since the best predictor for the residual in the AR models
cannot be but its mean value. The second consequence would be that economic
systems might be intrinsically unstable, that is also without the injection of
exogenous random inputs the system could be not motionless. Given these two
conclusions, we would have that real economic time series show to be complex,
seemingly random but they contain some deterministic structure; therefore, in
principle, they could better forecasted and better controlled via a noise reduc-
tion that should not be based on a linear …lter like autoregressive models.

In the next section we test whether or not the residual component of an
optimized autoregressive model is truly random, and we …nd, to our surprise,

that the hypothesis that
¿P

t=0
"t¡i are truly random is indeed not con…rmed by

our inference, notwithstanding the fact that the residuals in our model possess
the same statistical linear properties of white noise.

3 Some notes about the method

Before we proceed on the empirical analysis we summarize the basic steps of
our method:

29 This fact does not represent a real problem since autocorrelation in residuals is easily
removed (by means of a Koyck transformation) adding lagged regressors (normally two or
three), see Johnston J., Econometric Methods, Mc Graw Hill, 1984, chap.9.
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1) We …rst selected time series with a certain number of observations30 . This
is because, as Brock et Al. (1991) have pointed out, a number of at least 400
observations is a good starting point, if not a necessary condition, to obtain
reliable results from the BDS test31 .

2) We chose and we have relied on seasonally adjusted monthly data to
remove trivial non linearities due to seasonality.

3) We take the natural logs of the original time series that grow exponentially
over time.

4) We take the …rst di¤erence with respect to time.
5) We check for stationarity via the augmented Dickey-Fuller test32 .
6) We build our autoregressive model removing any linear autocorrelation

in the residuals via Koyck transformation.
7) We check for heteroscedasticity and if this is present we model it to

obtain the error terms with zero autocorrelation and zero heteroscedasticity.
Modeling heteroscedasticity means to estimate autoregressive models with con-
ditional heteroscedasticity (ARCH-GARCH) models. ARCH-GARCH models
are indeed non linear but this class of non linear models resembles the linear
AR-ARMA models except for the modelled non linearity in the residuals. What
is really important, however, is that, contrary to AR-ARMA models corrected
for heteroscedasticity, ARCH-GARCH models have error terms that are also
homoscedastic and not just uncorrelated. Because the BDS test detects the
presence of non linear structures, and therefore also ARCH structures (which
are non linear), we wanted to remove the presence of this type of non linearity
in order to search for other structures (di¤erent from ARCH) in the residuals.

8) We calculate the values of the maximal Liapunov exponents that charac-
terize the error terms of the estimated model, to see how fast nearby trajectories
of the error terms diverge over time. A positive Liapunov exponent is evidence
of chaos or noise.

9) We use Ruelle plots33 to uncover, from the qualitative point of view hidden
structures in the time series.

10) We test, using the BDS statistic, whether the error terms are indepen-
dently and identically distributed.

30 The time series we have used are those of the US. The data are provided by the Bureau
of Labor and Statistics and the Federal Reserve.

Links to the …les concerning monthly seasonally adjusted and in real terms for industry
productions were found at: http://www.bog.frb.fed.us/releases/G17/download2.htm

Indexes of industrial production go back to 1919 and the respective base year is 1992.
A table showing the historical consumer price index for all urban consumers beginning from

1913 was available from the BLS at: ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt.
This table refers to all urban consumers with 1982 as the base year.
The seasonally adjusted ”hourly wages” time series in this paper refers to the industry of

manufacturing and data type ”average hourly earnings of production workers”.
31 We exclude the possibility to analyze any time series of GDP and GNP because of the lack

of data, since these time series are at most quarterly. The GDP and GNP quarterly data only
extend back to 1959. Early in 2000, the Bureau of Economic Analysis has extended these data
back to 1929. Links to their data can be found at: http://www.bea.doc.gov/bea/dn1.htm.

32 See the statistical appendix for some information about this test.
33 Called also recurrence plots.
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11) We check our results randomly by shu­ing the time series and we verify
whether the results that we obtain from the BDS test applied on a randomly
shu­ed error terms are indeed di¤erent from the results that we obtained per-
forming the BDS test on the original time series of errors . This veri…cation,
known also as shu­e diagnostic34 , is extremely important for us since, if the
two results turn out to be di¤erent, it means that the time order of the original
time series is signi…cant and there exists causality in data35 .

4 Empirical evidence: the US time series

In the analysis that follows we focus on some main macroeconomic and sectoral
US time series. We check whether it is possible to extract signals from the error
terms that economic literature has assumed to be stochastic. What we want to
ascertain is whether or not the residuals embody some non linear components.
In other words, we are trying to …nd out whether important temporal linkages
are present in the residuals.

4.1 Industrial production

The time series for industrial production is certainly one of the most complete
available. Data go back to 1919 and the frequency of observation is monthly.

In Bevilacqua and van Zon (2001), applying the Dickey-Fuller test36 to the
log of the observed values, we could not reject the null hypothesis of a unit root

34 See H. W. Lorentz, Lecture notes in economics and mathematical systems, Berlin,
Springer Verlag, 1989. The shu­e diagnostic has been performed via ”surrogate time se-
ries” following the procedure suggested in H. Kantz and Schreiber T., Nonlinear time
series analysis, Cambridge, Cambridge University Press, 1997. A ”surrogate” time series is
essentially the shu­e of the original time series preserving all the linear properties of the time
series like frequencies, amplitudes and eventual linear autocorrelations. We have derived the
surrogate time series for all the economic time series we have analyzed, but we called them
with the more general and less specialistic term of ”shu­ed time series”.

35 In other words we try to falsify the results of rejection of the null i.i.d. hypothesis. We
will proceed to a random shu­e of the time series in order to break any temporal link among
data and we will apply non linear dynamics tools on the shu­ed time series. If the results of
non linear test on both the original and the shu­ed time series are similar, it means that time
linkages are not important and the time series is generated by a stochastic process, otherwise
there is evidence that time cannot be ruled out and there exists a nonlinear component.

36 Since some time series were autocorrelated in the residuals, we have used for all the real
time series the ”augmented” form of the Dickey-Fuller test including more lags, trend and
intercept. The number of lags we have considered is the minimum that is consistent with
uncorrelated residuals. See statistical appendix or R. Harris, Using cointegration analysis in
econometric modelling, London, Prentice Hall, 1995.
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(see also Tab. 1). Afterwards we have estimated the following linear model that
best …tted the data37 :

Yt = 0:02 + 0:99Yt¡1 + 0:51(Yt¡1 ¡ Yt¡2) + (2:89E ¡ 0:5)t + "t

where Y (t) was the observed values of the industrial production in terms of
real value. The Durbin Watson statistic was 1.95 within the acceptance range
1.89-2.10 and this indicates that the residuals were not serially correlated.

Hence we focused on the estimated residuals which turned out to be a¤ected
by heteroscedasticity38 . Since the BDS test detects GARCH structures39 we …rst
wanted to remove this odd non linear structure by modeling it via a GARCH
model.

The estimated GARCH model is40 :

Yt = 1:00Yt¡1 + 0:30(Yt¡1 ¡ Yt¡2) + "t

¾2
t = 0:01 + 0:69¾2

t¡1 ¡ 0:31"2
t¡1

Where ¾2
t is the today’s forecasted variance as a function of the forecasted

variance and the squared residuals of the past period. We recalculated the
Durbin Watson statistic for the exogenous inputs, and it turned out to be 1.94,
again within the acceptance range 1.89-2.10. The estimated residual turned
out to be homoscedastic too (see the ARCH Test on residuals in Tab. 1 and the
statistics appendix) since we cannot reject the null hypothesis of homoscedastic-
ity for high signi…cance levels (well above 5%). In Fig. 1, the estimated residual,
i.e. the di¤erence between the …tted model and the actual data, is shown in
a graph, while Fig. 2 contains some descriptive information concerning the
distribution of these estimated uncorrelated and homoscedastic residuals.

The calculation of the maximal Liapunov exponent depends on the parame-
ter of the embedding dimension m. There exists a maximal Liapunov exponent
for each value of m. The maximal Liapunov exponents are all positive for dif-
ferent values of m and this indicates a high sensitivity of the time series with
respect to its initial conditions (Tab. 11). However it is worthwhile to note that
the calculated maximal Liapunov exponent for this time series is quite lower
than the one calculated for a uniform i.i.d. process, but remarkably similar to

37 Note that the t -statistic we have computed recursively in all the tables of this paper, is
used to test the hypothesis that a coe¢cient is equal to ”zero”.

The corresponding probability is the p -value. If the p -value is lower than its signi…cance,
this is taken as evidence to reject the null hypothesis of a zero coe¢cient.

38 We have used the Lagrange multiplier ARCH Test for autoregressive conditional het-
eroskedasticity in the residuals (R. F. Engle, ”Autoregressive Conditional Heteroskedasticity
with Estimates of the Variance of U.K. In‡ation”, Econometrica, vol. 50, 1982, pp. 987-1008.),
see the statistical appendix.

39 See statistical appendix.
40 See also Tab. 1.
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the Liapunov exponents calculated for a i.i.d. process. This shows that the
estimated residuals of our GARCH model have values of the maximal Liapunov
exponent very much similar to that of a i.i.d. process.

However the doubt that some structured dynamics could be present arises
from a look at the Ruelle plot (Fig. 3). At …rst glance comparing Fig. 3 with
Fig. 25 (typical of a noise process) the di¤erence between the two pictures is
striking. The absence of any continuous diagonal lines is due to the fact that the
linear autocorrelations have been successfully removed. However, the presence
of continuous vertical and horizontal lines is clear, while conversely noise is
characterized by a completely unstructured plot.

To ascertain whether or not the time series is generated by an i.i.d. process
we have applied the BDS test. The null i.i.d. hypothesis is strongly rejected
(Tab. 2, column Wm;N). A similar test based on the same statistic of the BDS
test is the dimension test (Tab. 2, column dm)41 . The correlation dimension
dm grows very slowly with m. This is typical of a process that is not guided by
chance42 .

If we randomize the order of the events of the original time series, we …nd
that the values of the BDS test and the correlation dimension turn out to be
very di¤erent from the values obtained using the original time series and we
correctly always accept the null i.i.d. hypothesis for the shu­ed time series
(Tab. 3). This shows that the time order of the residuals of the original time
series is not random, and that a temporal causality in the residuals exists.

We conclude that estimated residuals in industrial production show a struc-
ture that cannot come from a stochastic process and a non linear explanation
might be necessary to understand the temporal causality of events.

4.2 Empirical analysis of other macroeconomic time se-
ries: industrial production in the main US sectors,
employment, hourly wages and consumer price index

We have limited our analysis to data of the main sectors of the American econ-
omy43 , employment, hourly wages44 and the consumer price index. Where rele-
vant the economic variables were seasonally adjusted. Again, we have monthly

41 Without going into the details, the dimension test is based on the fact that a truly stochas-
tic process is characterized by the growth of the correlation dimension with the increase of the
embedding dimension; conversely a truly chaotic process is characterized by the correlation
dimension that settles down to a constant value when the embedding dimension increases See
C. Hommes, Nonlinear economic dynamics, Amsterdam, University van Amsterdam, 1998.

42 Similar results were also obtained adding a small percentage of noise (5% of the variance).
We added noise to the time series simply because, when the nonlinear structure is well de…ned,
adding a small stochastic component should not signi…cantly change the result of the test.
Even if there were small i.i.d. measurement errors these should not call into question the
obtained results.

43 In real value.
44 In real value.
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observations. Data go back to 1947 for the transportation sector, industrial
machinery and electrical machinery, 1967 for the hybrid Hi-tech sector (com-
puters, semiconductors and communications), 1939 for employment, 1932 for
hourly wages and 1913 for the consumer price index.

Most of the (log transformed) time series, except employment, seem charac-
terized by a unit root, since for most of them we are not able to reject the null
i.i.d. hypothesis of the Dickey-Fuller test with high con…dence levels (higher
than 5%) (Tab. 4, 5, 6, 7, 8, 9 and 10)45 . These results are qualitatively similar
to those obtained by Nelson and Plosser. Also the estimated GARCH model
contains a unit root: this is readily apparent if we look at the coe¢cient of the
…rst lagged variable46 . For all the time series, the estimated residuals of the
GARCH model that …ts the data best turn out to be serially uncorrelated and
homoscedastic. In fact, the null hypothesis of the Durbin-Watson test as well
as the ARCH test are never rejected, even at high con…dence level for all the
time series (see the high p-values of the ARCH test on residuals in Tab. 4, 5, 6,
7, 8, 9 and 10). Our GARCH models seems to …t the actual data very well, and
more importantly the estimated residuals are uncorrelated, homoscedastic and
they are well behaved in the sense they are symmetrically distributed (see from
Fig. 4 to Fig.17). These estimated non linear models seem to depict the actual
dynamics well and also we …nd that the estimated residuals are distributed as
white noise. For this reason, the best predictor of the residuals is simply its
mean value.

Let us now turn to the other information we have extracted using non linear
dynamics tools.

For all the time series we found positive values of the corresponding maximal
Liapunov exponents (Tab. 11) and this result suggests that nearby trajectories
diverge over time at a positive exponential rate. However on the basis of just
the Liapunov exponent we still cannot establish whether or not the time series
is a stochastic process or a chaotic one, because a positive Liapunov exponent
may be due to either a stochastic process or chaos. The Liapunov exponent
measures should therefore not be taken as a test for chaos.

Fortunately some convincing qualitative information comes from the Ruelle
plots: the presence of structures di¤erent from those typical of a noise process
is clear from a visual inspection of the recurrence plots. If we compare Fig.
18, 19, 20, 21, 22, 23, 24 with Fig. 25 (Fig. 25 is typical of an unstructured
random process), we observe the existence of structures (repetitive continuous
lines over time) in the distances (represented by the intensity of grey) between
the embedded vectors (represented by each single point in the coordinates) 47 .

45 However for transportation equipment production and industrial machinery production
we were not able to reject the null hypothesis only at 1% signi…cance level.

46 See the estimated equations directly inside from Table 4 to Table 10.
47 The presence of continuous lines in the recurrence plots indicates that the embedded

vectors represented by each point keep approximately the same distance with respect to all
the vectors that belong to the continuous line. In a normal i.i.d. process, each vector is
randomly distant from any other vector and the probability that nearby vectors have similar
distances is very low. Thus in a normal i.i.d. process we should not notice any continuous
line in the recurrence plots.
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As a statistical test regarding the presence of non linearities that are not
captured from the GARCH model, we use the BDS test. Applying the BDS
test to all the time series at our disposal, we are not able to accept the null i.i.d.
hypothesis. All the series are characterized by high values of the BDS statistic
above their respective critical values48 (column Wm;N in Tab. 12, 13, 14, 15, 16,
17, 1849). The dimension test50 , based as the BDS test on the calculated value
of the correlation dimension, allows us in some cases to measure the dimension
of the chaotic attractor that characterizes the time series. This constant value
represents the dimension of the chaotic attractor. In all the series we have
analyzed, the correlation dimension (column dm in Tab. 12, 13, 14, 15, 16,
17, 18) grows less than proportionally with respect to ”m”, but in many cases
we cannot detect a clear tendency of the correlation dimension to settle clearly
to a constant value. We cannot therefore provide an exact estimate for the
dimension of the underlying chaotic attractor51 .

To check whether these results were spurious, we have randomly ordered
the real time series and applied BDS and calculated the dimension correlation
of the shu­ed time series to see whether temporal linkages were relevant. In
all the cases the values of the BDS and the dimension tests of the shu­ed
time series were notably di¤erent. We could not reject the null hypothesis of
the BDS test for all the shu­ed time series and the correlation dimension also
was higher (Tab. 3, 19, 20, 21, 22, 23, 24, 25) with respect to the original
time series (Tab. 2, 12, 13, 14, 15, 16, 17, 18). This is a con…rmation that
temporal linkages between residuals are truly important and therefore that just
a probabilistic hypothesis on the residuals of macroeconomic time series does
not have an empirical foundation.

5 Concluding remarks

We have …rst shown empirical evidence that seemingly random estimated resid-
uals from a GARCH …t are not truly random. What is certain is that these
residuals contain some non linear structure that a simple non linear model like
GARCH is not able to capture.

48 See the Statistical appendix for critical values, power of the test etc.
49 See also the statistical appendix for the …nite sample characteristics of the test.
50 Note that the ”dimension test”, contrary to the BDS test, is not really a statistical test

since critical values are not speci…ed. It is a numerical tool that suggests the existence a
deterministic dynamics when the calculated correlation dimension tend to a …xed value when
the embedding dimension grows.

51 This phenomenon may be due to the presence of a stochastic component in the time series.
It is therefore important to …lter our data in order to separately analyze the deterministic
component and to quantify the dimension of the chaotic attractor. The future application
of …lters that allow us to reduce and hopefully remove the stochastic component may also
allow us to detect the dimension of chaos for all the real time series for which we have already
uncovered the presence of chaos.
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In Bevilacqua and van Zon (2001), it was shown that the models with a
deterministic (linear or broken) or stochastic trend, are based on the hypothesis
of i.i.d. residuals. There we found that these residuals contained non linearities.
However, we also found that residuals were a¤ected by heteroscedasticity. Any
correction of an ARMA model for heteroscedasticity improved the estimation
of the coe¢cients of the model, but the heteroscedasticity in the residuals could
not be removed.

In this paper we have tried to capture the non linearity by modeling the
variance. The obtained estimated residuals from a GARCH model turned out
to be homoscedastic, so the non linearity arising from heteroscedasticity was
successfully removed.

We have used the BDS test (which has power against ARCH-GARCH struc-
tures) on the residuals of the GARCH model to detect eventual non linearities
that could not be captured by the GARCH model. We concluded that, for
all the main time series of the US economy, estimated residuals show temporal
causality.

Statistical appendix

Our basic statistical issue is to understand whether the dynamics behind the
residuals is the result of non linearities or just of a random process. In sections 4
and 5 we have analyzed some cases of both arti…cial and real time series, and we
applied to these time series some statistical tools like the Dickey-Fuller unit root
test to check for stationarity and the Durbin-Watson statistic to check whether
the residuals were serially uncorrelated. This appendix gives some basic infor-
mation about the statistical tools used in this paper. More technical information
about testing for unit roots may be found in Harris (1995)52 , Boswijk (1996)53

and Maddala and Kim (1998). We also provide some introduction for testing
non linear dynamics with the BDS test and measures about the stability of the
systems with Liapunov exponents, entropies and the visual tool of recurrence
plots. A comprehensive and technical description of the BDS test is found in
Brock et Al. (1991)54 , while advanced material about Liapunov exponents, en-
tropies and recurrence plots may be found in Tong (1990)55 and in Kantz and
Schreiber (1997). In this appendix we summarize the logics and some results of
both the linear and non linear time series methods that are strictly necessary
for the understanding of the paper.

a ) The Durbin-Watson test
52Harris R., Using cointegration analysis in econometric modelling, Prentice Hall, London,

1995.
53H. P. Boswijk, Unit roots and cointegration, Amsterdam, University van Amsterdam,

1996.
54W. A. Brock, D.A Hsieh and LeBaron B., Nonlinear dynamics, chaos, and instability:

Statistical theory and economic evidence, Cambridge, MIT press, 1991.
55H. Tong, Non-linear time series: a dynamical system approach, Oxford, Clarendon Press,

1990.
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The Durbin-Watson test is a parametric hypothesis test. The Durbin-
Watson statistic measures the relation between adjacent residuals. Serial corre-
lation in the residuals that are adjacent in time constitutes a problem that should
be removed. In fact, serial correlation leads ordinary least squares to biased esti-
mates of the parameter coe¢cients, and is symptomatic of bad model speci…ca-
tion (Johnston 1984)56 , that is the functional form of the model (xt = xt¡1+"t)
is inappropriate because some variables (e.g. lagged errors "t = ½"t¡1 + vt with
¡1 < ½ < 1 and v s N

¡
0; ¾2

¢
) are omitted (Harvey 1990)57 .

The Durbin-Watson statistic DW is de…ned as DW =

TP
t=2

³^
"t¡^

"t¡1

´2

TP
t=1

^
"
2

t

t

2 (1 ¡ ½) where
^
"t are the OLS estimated residuals. If there is no correla-

tion between adjacent residuals, DW will be around 2. Given the equation
"t = ½"t¡1 + vt with vt v N (0; ¾), the null hypothesis of zero autocorrelation is
H0 : ½ = 0;while the alternative is ½ 6= 0. Since DW t 2 (1 ¡ ½), the DW will
be close to 2 under the null hypothesis ½ = 0: In the case of strong positive serial
correlation, it will be near zero. In the case of negative serial correlation, the
Durbin-Watson statistic has a value between 2 and 4. Critical values depend
on the sample size. In presence of large samples (i.e. more than 200 obser-
vations) DW is approximately normally distributed with mean 2 and variance
4/N with N the number of observations (Harvey 1990). Based on this result,
we can easily derive the critical values for any size of the test for one tailed test
against either positive or negative autocorrelation. The null hypothesis of zero
autocorrelation is rejected if the DW statistic is less than its critical value for
the case of positive autocorrelation alternative hypothesis and greater than its
critical value for the case of negative autocorrelation alternative hypothesis.

In the case of normal distribution N
¡
2; 4

N

¢
the repartition function F (z) is

equal to 1p
2¼

R z

¡1 e¡ u2

2 du with z = (x¡2)p
4
N

and 1p
2¼

e¡ u2

2 du s N (0; 1).

The null hypothesis of zero autocorrelation is rejected if the DW statistic
is less than its critical value for the case of positive autocorrelation alternative
hypothesis. The probability that N

¡
2; 4

N

¢
assumes values less than its critical

value x is F (z) : If the size of the test is 5% we have: ® = P (Z < z) = F (z) =

5% = 1 ¡ 95% = 1 ¡ F (1:6449) = F (¡1:6449). z = (x¡2)p
4
N

= ¡1:6449 ! x =

2 ¡ 1:6449 ¤
q

4
N .

If the size of the test is 3%, x = 2¡1:96¤
q

4
N while for ® = 1%, the critical

value is x = 2 ¡ 2:326 ¤
q

4
N

e.g. if N=1021 the critical value corresponding to a 5%, 3% and 1% size of
the test are respectively 1.897, 1.877 and 1.854.

56J. Johnston, Econometric Methods, New York, Mc Graw Hill, 1984.
57A. C. Harvey, The econometric analysis of time series, Philip Allan, 1990.
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As the sample size grows the critical values tend to 2! The null hypothesis of
no serial correlation is rejected in favor of positive serial correlation if DW is less
than its critical value at a …xed level of signi…cance. Similarly the null hypothesis
of no serial correlation is rejected in favor of negative serial correlation if DW
is greater than its critical value at a …xed level of signi…cance.

For a 5% size of the test we have: ® = P (Z > z) = 1¡F (z) = 5% = 1¡95%;

! F (z) = 95% = F (1:6449) and z = (x¡2)p
4
N

= 1:6449 ! x = 2 + 1:6449 ¤
q

4
N .

If the size of the test is 3%, x = 2+1:96¤
q

4
N while for ® = 1%, the critical

value is x = 2 + 2:326 ¤ 4
N :

e.g. if N=1021 the critical value corresponding to a 5%, 3% and 1% size of
the test are respectively 2.103, 2.123, 2.146.

The rule of thumb suggested by some econometric software of considering
serial correlation in serious consideration only for values less 1.5 or greater than
2.5 is therefore wrong for large sample, while it could be accepted for small
samples (like 20 or 30 observations). As large sample increases for the same
size of the test we should calculate its critical values in the way as it has been
shown.

b) The ARCH Test

We have used the Lagrange Multiplier ARCH Test (LM ARCH test) for
autoregressive conditional heteroscedasticity in the residuals (Engle 198258).

To test the null hypothesis that there is no ARCH up to a certain order in
the residuals, the following regression for the squared residuals is …tted:

"2
t = µ0 + µ1"

2
t¡1 + ::: + ut

where "t is the residual and ut an exogenous input. We have used EViews
3.1 software which reports two test statistics from this test regression. The
Obs*R-squared statistic is the Engle LM test statistic. The F -statistic is an
omitted variable test for the joint signi…cance of all lagged squared residuals.
We reject the null hypothesis of zero heteroscedasticity and no omitted variables
if the respective p-values are lower than the signi…cance level (generally set at
1, 3, or 5 %).

c) The Dickey-Fuller test

The Dickey Fuller test is a parametric hypothesis test. With the Dickey-
Fuller test we are concerned with testing whether the parameter Á of the re-
gression equation xt = Áxt¡1 + "t is equal to 1 with "t s i:i:d:(0; ¾2). xi with
i = 1:::T are the natural logarithms of the real quantities. Since real time se-
ries do not show an ever increasing growth rate we are only concerned whether

58Engle R. F., ”Autoregressive conditional heteroscedasticity with estimates of the variance
of United Kingdom in‡ation”, Econometrica, Vol. 50, 1982, pp. 987-1007.
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Á = 1 (i.e. the series is non stationary) or alternatively Á < 1 (i.e. the series is
stationary).

Applying the di¤erence operator ¢: ¢xt = xt ¡ xt¡1, xt = Áxt¡1 + "t !
¢xt = (Á ¡ 1)xt¡1 + "t. The null hypothesis Á = 1 is equivalent to (Á ¡ 1) = 0
and the alternative to (Á ¡ 1) < 0.

Dickey and Fuller (1976)59 , via Monte Carlo techniques, derived a t-test
from the data generated by the random walk process ¢xt = xt¡1 + "t. The
critical values of the Dickey-Fuller test for pre…xed levels (10, 5, 2.5 and 1%) of
signi…cance are:

T 10% 5% 2.5% 1%
25 -1.60 -1.95 -2.26 -2.66
50 -1.61 -1.95 -2.25 -2.62
100 -1.61 -1.95 -2.24 -2.60
250 -1.62 -1.95 -2.23 -2.58
500 -1.62 -1.95 -2.23 -2.58
1 -1.62 -1.95 -2.23 -2.58

The null hypothesis is rejected when the t-ratio is smaller than its critical
value. Testing for a unit root using the regression equation ¢xt = (Á ¡ 1)xt¡1+
"t implies that the process has zero mean (i.e. no stochastic trend) and no
deterministic trend.

A more general regression equation is: xt = ® + ¯t + Áxt¡1 + "t ! ¢xt =
®+¯t+(Á ¡ 1)xt¡1 +"t where ® and ¯ are parameters. ® indicates that there
is a stochastic trend (drift) while ¯t indicates that there is a deterministic trend.
Given the regression equation ¢xt = ®+¯t+(Á ¡ 1)xt¡1+"t the critical values
of the Dickey-Fuller test are:

T 10% 5% 2.5% 1%
25 -3.24 -3.60 -3.95 -4.38
50 -3.18 -3.50 -3.80 -4.15
100 -3.15 -3.45 -3.73 -4.04
250 -3.13 -3.43 -3.69 -3.99
500 -3.13 -3.42 -3.68 -3.98
1 -3.12 -3.41 -3.66 -3.96

and the null hypothesis is rejected when the t-ratio is smaller than its critical
value. In the case where the data generating process is unknown, the use of the
regression equation ¢xt = ® + ¯t + (Á ¡ 1)xt¡1 + "t is to be preferred to
¢xt = (Á ¡ 1)xt¡1 + " since the latter is only valid when the mean of the time
series is zero while we do not know the true mean of the time series. The more
general speci…cation of the regression equation prevents us to get spurious results
when there is not any a priori information about the existence of a deterministic
or stochastic trend in the time series. However ¢xt = ®+¯t+(Á ¡ 1) xt¡1 +"t

59 See Harris 1995.
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is an autoregressive model of order 1. If the true data generating process were of
order>1, that is ¢xt would depend on other lagged terms than xt¡1, "t would
turn out to be autocorrelated as an e¤ect of the mispeci…cation. Autocorrelated
errors invalidate the use of the Dickey-Fuller distribution, which are based on the
assumption of white noise. Changing the estimating equation to the augmented
Dickey-Fuller regression, we have:

¢xt = ® + ¯t + (Á ¡ 1)xt¡1 +
p¡1P
i=1

(Ái ¡ 1) ¢xt¡1 + "t where (Á ¡ 1) =

pP
i=1

(Ái ¡ 1) ¡ 1

If (Á ¡ 1) = 0, against the alternative (Á ¡ 1) < 0; xt contains a unit root.
The same critical values of the case ¢xt = ® + ¯t + (Á ¡ 1)xt¡1 + "t may be
used, although they are valid as an asymptotic approximation (Boswijk 1996).
A large negative t-statistic rejects the hypothesis of a unit root and suggests
that the series is stationary. In this paper we have used the augmented form of
the Dickey-Fuller test and the critical values are those from Mac Kinnon (1991)
for various sample size.

d) Grassberger-Procaccia correlation sum (integral)

The Grassberger-Procaccia correlation sum (1983)60 is de…ned as the frac-
tion of all possible pairs of points in a m-dimensional (i.e. vectors of m-elements)
lying within a distance ² (Dechert 1994, Hommes 1998). Intuitively the corre-
lation sum is a measure of concentration of scattered points.

Its formula is:

Cm;N (²) = 2
N(N¡1)

NP
i=1

NP
j=i+1

Â (² ¡ kxi ¡ xjk)
where N is the number of observation of a m-dimensional vector time series

xi = [xi; xi+1; :::; xi+m¡1],
xi the observations i = 1; 2; :::; N .
kxi ¡ xjk is the euclidean distance between vectors, i.e.p

(xi ¡ xj)2 + (xi+1 ¡ xj+1)2 + ::: + (xi+m¡1 ¡ xj+m¡1)2

Â is a function that:
Â (² ¡ kxi ¡ xjk) = 1 if kxi ¡ xjk < ²,
Â (² ¡ kxi ¡ xjk) = 0 if kxi ¡ xjk ¸ ².
Two important theorems (we refer the reader to the original references for

the proves) are related to the correlation sum, the correlation dimension and
the BDS statistic that will be discussed below:

Theorem 1 as N ¡! 1, Cm;N (²) ¡! Cm (²) = Pr (kxi ¡ xjk < ²) with

probability one (Brock et al. 1991).

60 See W. D. Dechert, The correlation integral and the independence of gaussian and
relatec processes, SSRI W.P. 9412, Madison, University of Wisconsin, 1994.
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Therefore for a su¢ciently large number of observations the correlation sum
measures the probability that two randomly chosen vectors xi and xj are ²-close
to each other:

Cm;N (²) = 2
N(N¡1)

NP
i=1

NP
j=1

Â (² ¡ kxi ¡ xjk) s Cm (²) = Pr (kxi ¡ xjk < ²)

Theorem 2 if xi is generated by a stochastic i.i.d. process then
lim

n!1
(Cm;N (²) ¡ C1;N (²)m) ! 0 with probability 1 (Brock and Dechert1988)61.

Therefore for a su¢ciently large number of observations Cm;N (²) s C1;N (²)m

if the underlying process is i:i:d::

e) Correlation Dimension

The correlation dimension dm is de…ned as: dm = lim
²!0

lim
N!1

ln Cm;N(²)
ln ² and

can be readily obtained once we have computed the correlation sum Cm;N (²).
Let us analyze some limit cases:
Cm;N (²) = 1 is de…ned as the fraction of all possible pairs of points (or

vectors) are lying within a small distance ², so it may assume any value between
0 and 1.

Suppose that Cm;N (²) = 0, that is there are no pairs of points (or vectors)
lying within a small distance ². dm = ln 0

0 = 1: For a random process the
dm ! 1.

Suppose that Cm;N (²) increases towards 1, that is the fraction of all pos-
sible pairs of points (or vectors) are getting inside within a small distance ².
lnCm;N (²) decreases towards ln 1 = 0 and with it dm that tends towards 0:
This is the case in which all the observations are all lying close each other and
all inside a distance ²: The phenomenon is completely stable and determined.

Now non linear mathematical systems are able to generate time series where
0 < dm < 1: For pseudo random generator dm ¡! 1, while for any other
system dm tend to a …nite value. For example in the case of the tent map it is
easy to calculate that dm ¡! 1; for this case and others see Hsieh (1991)62 . With
the calculus of the correlation dimension seems therefore to be possible to detect
determinism. However this experimental procedure is not a statistical test.
Brock, Dechert and Scheinkman (1987)63 have therefore provided a statistical
hypothesis test with a null hypothesis of i:i:d: against any departure from i:i:d:

61W. A. Brock and Dechert W. D., ”Theorems on distinguishing deterministic from
random systems” in W. Barnett et al., Dynamic econometric modelling, Cambridge, Cam-
bridge University Press, 1988.

62D. A. Hsieh, ”Chaos and nonlinear dynamics: application to …nancial markets”, Journal
of Finance, vol. 46, 1991, pp.1839-1877.

63W.A. Brock, W.D. Dechert and Scheinkman J.A., A test for independence based on
the correlation integral, Madison, University of Wisconsin, 1987
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f) The BDS statistic, size and power

The BDS test is a non parametric hypothesis test. Contrary to paramet-
ric tests, like the Durbin-Watson and the Dickey Fuller tests, it does not test
whether a particular parameter assumes a given value. Indeed it tests whether
data are independent and identically distributed.

We have seen that theorem 2) implies that Cm;N (²) s C1;N (²)m if the
underlying process is i:i:d:.
Brock et al (1987) have also proved that

p
NCm;N (²) ¡ C1;N (²)m converges to

a normal distribution (one can also compute Cm;N (²) and C1;N (²) and show
the same results):

Theorem 3 as N ¡! 1, if xi is generated by a stochastic i.i.d. process then,p
NCm;N (²) ¡ C1;N (²)m ¡! N(0; ¾) and Wm;N (²) =

p
N Cm;N (²)¡C1;N(²)m

¾m;N (²)

where ¾m;N (²) is a consistent estimator of the asymptotic standard error of
[Cm;N (²) ¡ C1;N (²)m].

Wm;N (²) =
p

N Cm;N (²)¡C1;N(²)m

¾m;N(²) is the BDS statistic and converges in dis-
tribution to a standard normal N(0; 1).

Size
As N ¡! 1 the critical value corresponding to a 10%, 5% and 2% size of

the two side test are respectively j1:64j, j1:96j and j2:33j. The null hypothesis of
i:i:d: is rejected if the Wm;N (²) is greater than its critical value at a …xed level
of signi…cance.

However as any other test that relies on its asymptotic distribution, we need
the critical values for the …nite sample distribution. Brock et al. (1991) and
Hsieh (1991). These values were found via Monte Carlo simulations. They have
generated random number samples of di¤erent sizes (100, 500 and 1000) and
6 distributions (standard normal, student-t with 3 degrees of freedom, double
exponential, chi square with 4 degrees of freedom, uniform and bimodal). They
applied the BDS test and repeated this experiment 2000 times (5000 for samples
of 100 and 500 data points) for di¤erent values of m (m = 2;m = 5 and m = 10)
and ² ( ²

¾ = 1
4 ; 1

2 ; 1; 3
2 ; 2). If we use a 5%, 2.5% or 1% signi…cance level, we should

reject 5%, 2.5% or 1% of the replications. Brock et al. and Hsieh found the size
of the test for di¤erent critical values (§1:64;§1:96;§2:33 which correspond to
5%, 2.5% or 1% size of the standard normal in case of one side test) of the
parameters m and ² for di¤erent …nite sample sizes.

These were the main results from Monte Carlo simulations (see Brock et al.
1991 for all the tables of the BDS test):
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1) The …nite sample property is quite poor for samples of 100 points. We
report the results from the normal distribution. We can easily see that the BDS
test rejects the null hypothesis i:i:d: at least 3 times more than it should.

Si ze of BDS Statistic, Standard Normal

m = 2; N = 100
²=¾

0:25 0:50 1:00 1:50 2:00
N (0; 1)

% < ¡2:33
% < ¡1:96
% < ¡1:64
% > 1:64
% > 1:96
% > 2:33

28:3 13:1 3:90 3:94 5:62
32:1 17:2 8:02 7:1 9:18
35:6 21:9 12:3 12:04 13:8
27:9 16:5 10:0 9:02 10:1
25:2 13:4 6:44 5:66 7:12
23:0 10:4 3:78 2:96 4:5

1:00
2:50
5:00
5:00
2:50
1:00

Using the i:i:d: time series generated by the other distribution (especially
the uniform and the bimodal) did not change the picture very much. The null
hypothesis is spuriously rejected too often when the sample size is small.

If we increase the sample size to 500 and 1000 data points, the BDS dis-
tribution becomes more normal and its asymptotic distribution (the standard
normal) gives a much better approximation of the …nite sample BDS distribution
(especially when N=1000). Similar results (see Brock et al.1991) were obtained
when the samples were obtained from the other i:i:d. processes (student-t etc.)

Si ze of BDS Statistic, Standard Normal

m = 2; N = 500
²=¾

0:25 0:50 1:00 1:50 2:00
N (0; 1)

% < ¡2:33
% < ¡1:96
% < ¡1:64
% > 1:64
% > 1:96
% > 2:33

8:62 1:96 1:10 1:28 1:34
13:0 4:44 3:04 3:26 3:52
17:1 8:24 5:98 6:20 6:78
16:9 9:32 6:92 6:04 6:58
12:6 5:76 3:76 3:36 3:86
8:98 3:42 1:80 1:68 1:88

1:00
2:50
5:00
5:00
2:50
1:00

m = 2;N = 1000
²=¾

0:25 0:50 1:00 1:50 2:00
N (0; 1)

% < ¡2:33
% < ¡1:96
% < ¡1:64
% > 1:64
% > 1:96
% > 2:33

4:65 1:40 1:05 0:90 0:80
8:95 3:25 2:90 2:45 2:65
13:3 6:55 5:60 6:30 6:15
9:50 6:20 4:70 4:20 5:50
6:30 3:70 2:25 2:40 2:50
3:60 1:55 0:90 0:70 0:90

1:00
2:50
5:00
5:00
2:50
1:00

2) increasing the embedding dimension m the asymptotic distribution may
provide a better approximation of the …nite sample BDS distribution.
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Si ze of BDS Statistic, Standard Normal

m = 5; N = 500
²=¾

0:25 0:50 1:00 1:50 2:00
N (0; 1)

% < ¡2:33
% < ¡1:96
% < ¡1:64
% > 1:64
% > 1:96
% > 2:33

12:8 0:84 0:94 1:16 1:12
17:1 2:48 2:24 2:88 2:92
21:8 5:58 5:52 5:62 5:86
19:7 7:24 5:12 5:20 5:68
16:1 4:56 3:10 2:96 3:16
12:9 2:84 1:56 1:28 1:6

1:00
2:50
5:00
5:00
2:50
1:00

m = 5;N = 1000
²=¾

0:25 0:50 1:00 1:50 2:00
N (0; 1)

% < ¡2:33
% < ¡1:96
% < ¡1:64
% > 1:64
% > 1:96
% > 2:33

6:05 0:70 0:70 0:85 0:60
9:55 2:25 2:30 2:55 2:50
13:7 4:60 5:35 5:50 5:40
14:4 6:80 5:35 5:75 5:90
11:0 4:20 3:10 3:50 3:55
7:55 2:25 1:95 1:70 1:60

1:00
2:50
5:00
5:00
2:50
1:00

However for large values of m the …nite sample property gets poor again.
The reason is that there may be too few observations. In fact Wm;N (²) =p

N Cm;N (²)¡C1;N(²)m

¾m;N(²) and if we calculate for example C1;N (0:25) we …nd C1;N (0:25) =

0:14. If m = 10, C1;N (0:25)10 = 2:89255E ¡ 09. If we compute C1;N (0:25)10

when we have for 1000 observations C1;N (0:25)10 = 0, that is the probability
to …nd pairs of 10-dimensional vectors within ² = 0:25 is zero. The computed
Wm;N (²) becomes large and we spuriously reject the null i.i.d. hypothesis.
Brock et al. (1991) suggest to keep the maximal value of m around N

200 . For
²
¾ = 0:25, N = 1000 and m = 10 we reject 95% the right null hypothesis in-
stead of 1%. If we increase the ratio ²

¾ to 1 we have very good results and the
N(0; 1) is a good approximation of the …nite sample BDS distribution. This is
why by increasing ² we also increase the probability to …nd vectors closer than
²: However from the preceding tables increasing ²

¾ beyond 2.0 is not generally
recommended since the size of the BDS tends to be too small compared to the
normal distribution (it would spuriously accept too often the null hypothesis).
Mostly the choice of ²

¾ = 1 or 1:5 gives a good size of the test. We have computed
the BDS test for many di¤erent values of ²

¾ between 2 and 0:25.
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Si ze of BDS Statistic, Standard Normal

m = 10; N = 1000
²=¾
0:25

²=¾
1:00

N (0; 1)

% < ¡2:33
% < ¡1:96
% < ¡1:64
% > 1:64
% > 1:96
% > 2:33

95:0
95:15
95:4
3:75
3:70
3:60

0:40
1:35
3:85
6:40
3:90
2:00

1:00
2:50
5:00
5:00
2:50
1:00

Power

The BDS test has asymptotic power against the following speci…c alterna-
tives:

- …rst order autoregression AR(1): xt = ½xt¡1+"t , j½j 6 1 and "t s N (0; 1)
- …rst order moving average MA(1): xt = ½"t¡1+"t, j½j 6 1 and "t s N (0; 1)
- tent map: xt = 2xt¡1 if xt < 0:5 and xt = 2 ¡ 2xt¡1 if xt > 0:5
- threshold autoregression TAR(1) (Lim 1980, see Tong 1990) : xt = ½xt¡1+

"t , j½j 6 1 if xt 6 x and xt = %xt¡1 + "t , j%j 6 1 if xt ¸ x and "t s N (0; 1)
- non linear moving average NMA (Robinson 1977, see Tong 1990): xt =

"t + "t¡1"t¡2 and "t s N (0; 1)
- autoregressive conditional heteroscedasticity ARCH (Engle 1982): xt =

zt"t and z2
t = z2

0 + ½x2
t¡1 and "t s N (0; ¾), 0 < ½ < 1, xt has variance z2

0

1¡½

- generalized autoregressive conditional heteroscedasticity GARCH (Boller-
slev 198664): xt = zt"t and z2

t = z2
0 + ½x2

t¡1 + %z2
t¡1 and "t s N (0; 1),

0 < ½ + % < 1, xt has variance z2
0

1¡½¡%
It rejects the null hypothesis of i:i:d: with probability one for 0 6 ²

¾ 6 2.

For …nite samples Monte Carlo simulations showed that (see Brock et al.
1991 for all the tables of the BDS test):

1) the BDS test has di¤erent power against di¤erent alternatives. As an
extreme case see that for a sample size of 100 data points and a signi…cance
level of 1%, the power against a GARCH model is only 14.4%, that is the
probability to accept the alternative when this is the true one is only 14.4%.
On the contrary in the case the time series is generated by a the tent map the
power is maximal.

Power of BDS Statistic

m = 2; N = 100
²=¾
1:00

% > 1:64
% > 1:96
% > 2:33

tent GARCH
100% 25:6%
100% 20:2%
100% 14:4%

64Bollerslev T., ”Generalized autoregressive conditional heteroscedasticity”, Journal of
Econometrics, Vol. 31, 1986, pp. 307-27.
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2) the BDS test increases its power with the sample size. As an example,
notice that for N=1000, in the case of GARCH model, the power of the test
increases to beyond 80%

Power of BDS Statistic

m = 2
²=¾
1:00

% > 1:64
% > 1:96
% > 2:33

GARCH N = 100
25:6%
20:2%
14:4%

GARCH N = 500
67:8%
58:9%
48:3%

GARCH N = 1000
90:4%
85:9%
80:3%

3) the BDS test increases its power with the embedding dimension but for
a large embedding dimension the power of the test falls:

Power of BDS Statistic

N = 1000
²=¾
1:00

% > 1:64
% > 1:96
% > 2:33

GARCH m = 2
90:4%
85:9%
80:3%

GARCH m = 5
98:9

98:4%
97:2%

GARCH m = 10
0%
0%
0%

4) The BDS test has good power properties against all the alternative con-
sidered when the number of data points is 1000. When the data points available
are around 500, the BDS shows good power except for the GARCH alternative:

Power of BDS Statistic
N = 1000

m = 5
²=¾
1:00

% > 1:64
% > 1:96
% > 2:33

tent AR(1) MA(1) TAR NMA ARCH GARCH
100% 100% 100% 98:8% 100% 100% 98:9%
100% 100% 100% 97:2% 100% 100% 98:4%
100% 100% 100% 94:5% 100% 100% 97:2%

Power of BDS Statistic
N = 500

m = 5
²=¾
1:00

% > 1:64
% > 1:96
% > 2:33

tent AR(1) MA(1) TAR NMA ARCH GARCH
100% 100% 99:6% 98:8% 100% 100% 87:4%
100% 100% 99:3% 97:2% 100% 100% 83:0%
100% 100% 98:5% 94:5% 99:6% 99:9% 76:6%

23



5) Comparing the power results of the BDS test over a 500 data points time
series to that of other non linear tests, speci…cally the Tsay test (1986)65 and
the Engle test, the BDS test performs better or similar to these tests. The
Engle test performs slightly better than the BDS tests in the case of GARCH
structures. However the BDS contrary to the Engle test (which look for non
zero autocovariances) is able to detect non linearities independently from the
value of autocovariances.

g) Liapunov exponents

The Liapunov exponent quanti…es the sensitive dependence on initial con-
ditions (states). Take for example a one dimensional dynamic system xt =
f (xt¡1) like the tent map:

xt = 2xt¡1 for xt¡1 < 0:5
xt = 2(1 ¡ xt¡1) for xt¡1 < 0:5

We know that for the tent map, given an initial state x0, there will correspond
one and only one x1between 0 and 1. If the process were uniformly distributed
between 0 and 1, x1 could assume any value between 0 and 1 with the same
probability. In the case of the tent map, x1 has only one speci…c correspondent
xt+1 between 0 and 1. This means that the system is dependent on initial
conditions.

If we take another possible initial state x0 + ²0 close to x0, f (x0 + ²0) will
be still close to f (x0), but it will be more distant than x0 + ²0 from x0. After
some periods the two orbits will appear to be totally uncorrelated. This is
because the two orbits are divergent. The system is characterized by sensitive
dependence because two nearby initial states lead to two di¤erent orbits which
are divergent.

The Liapunov exponent measures the average rate of divergence of nearby
initial states.

After N periods, the distance between the two orbits is (Hommes 1998,
Kantz and Schreiber 1997):

¯̄
fN (x0 + ²0) ¡ fN (x0)

¯̄
t

¯̄
¯
¡
fN

¢0
(x0) ²0

¯̄
¯

If we denote with ²N the distance at time N between the two orbits we may
de…ne the exponential divergence of nearby orbits as:

²N = ²0e
¸N

²N = ²0 when ¸ = 0, that is the case of a cyclical series or a steady state
²N < ²0 when ¸ < 0, that is the case of convergent series towards a steady

state
²N > ²0 when ¸ > 0, that is the case of divergent series

65R. Tsay, ”Nonlinearity tests for time series”, Biometrica, 1986 pp.461-46.
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¯̄
fN (x0 + ²0) ¡ fN (x0)

¯̄
t

¯̄
¯
¡
fN

¢0
(x0) ²0

¯̄
¯ = ²0e

¸N

¯̄
¯
¡
fN

¢0
(x0)

¯̄
¯ = e¸N ¡! ¸ = 1

N ln
¯̄
¯
¡
fN

¢0
(x0)

¯̄
¯

Using the chain rule for
¡
fN

¢0
(x0) and taking the limit t ! 1

¸ = lim
N!1

1
N

N¡1P
i=0

ln
¯̄
f 0(f i (x0))

¯̄

¸ is the Liapunov exponent. Notice that if we have a positive ¸, say ¸ = ln 2,
after 10 periods

e10 ln 2 = 210 = 1024 ¡!
¯̄
f10 (x0 + ²0) ¡ f10 (x0)

¯̄
= 1024²0

that is after 10 periods the distance between f10 (x0 + ²0) and f10 (x0) is
on average 1024 times greater than f0 (x0 + ²0) and f0 (x0). If the initial true
value were x0 + ²0 and we had measured x0, after 10 periods we would have an
ampli…ed error on average 1024 times greater than the initial error. The larger
the Liapunov exponent the more di¢cult the prediction is, and so the Liapunov
exponent is a measure of predictability.

When we have a time series, we do not know the true function f , but we have
its realizations, that is a time series. We have used the following algorithm by
Kantz (1994)66 to compute numerically the Liapunov exponent, directly from
the time series without knowing the true or an estimated function of f .

Suppose to observe a point (or vector) xj that is very close to xi. xj and xi

are the observed values of the underlying function. Take the distance between
these two observations ²i = xj ¡ xi. ²i grows exponentially with time.

After N periods, the distance between the two points is:

jxN+j ¡ xN+ij = j²N+ij = ²ie
¸N .¯̄

¯
¡
fN

¢0
(xi)

¯̄
¯ = e¸N

¸ = 1
N ln

¯̄
¯
¡
fN

¢0
(xi)

¯̄
¯

¸ is the value of the Liapunov exponent. Since from one single time series
can de…ne as many di¤erent Liapunov exponents as the number of embedding
dimension m, we can restrict ourself to the maximal Liapunov exponent that
is the most relevant for our analysis. Numerically one can derive a robust
consistent and unbiased estimator for the maximal Liapunov exponent (Kantz
and Schreiber 1997). One computes:

© = 1
N

N¡1P
i=0

ln

Ã
1

j»(xi)j
P

x2»(xi)

jxj+n ¡ xi+nj
!

66 See Kantz, Schreiber (1997).
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» (xi) is the neighborhood of xi with radius ²i. j» (xi)j denotes the number
of observed values within the neighborhood of xi. n is the number of iteration.
© varies with n and its slope gives an estimate of the Liapunov exponent.

h) recurrence plots

A recurrence plot (xi;xj) is a graphical representation of the euclidean dis-
tance kxi ¡ xjk in the correlation integral in two dimensions.

It is easy to produce a recurrence plot via an ordinary excel program or alike
for the Â function in the correlation integral:

Â (² ¡ kxi ¡ xjk) = 1 if kxi ¡ xjk < ² and we give to the correspondent
point (xi;xj) in the recurrence plot the color white

Â (² ¡ kxi ¡ xjk) = 0 if kxi ¡ xjk ¸ ² and we give to the correspondent
point (xi;xj) in the recurrence plot the color black.

When kxi ¡ xjk = 0 the correspondent point (xi;xj) is white. Along the
450 line xi ´ xj so that the 450 line xixj is white.

When kxi ¡ xjk is maximal, (xi;xj) is black.
When 0 < kxi ¡ xjk < 1, the (xi;xj) assumes a grey tone proportional to

the euclidean distance.
For random signals, the uniform distribution of grey tones over the entire

plot is expected. For non linear systems a more structured recurrence plot
may be dominant. Any continuous line and zones characterized by the same
grey tone in the plot indicates the existence of correlation between pair of the
m-dimensional points (xi;xj) since they maintain a similar euclidean distance.
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Tab 1: industrial production 
ADF Test Statistic -3.054169     1%   Critical Value  -3.9724 

      5%   Critical Value  -3.4167 
      10% Critical Value  -3.1304 

Model:   
Y(t) = 1.00*Y(t-1) + 0.30*(Y(t-1)-Y(t-2))+ εt 
σt

2 =0.01+0.69σt-1
2 +0.31εt-1

2 
Variable Coefficient Std. Error t-Statistic Prob.   

Y(t-1) 1.001963 0.000431 2327.129 0 
Y(t-1)-Y(t-2) 0.303917 0.045422 6.690965 2.22E-11 

C 0.01206052 0.00332172 3.63080303 0.00028254 
ARCH(1) 0.30757605 0.0668553 4.6006233 4.21E-06 

GARCH(1) 0.6967068 0.04809526 14.4859752 0 
R-squared 0.999837     Mean dependent var  48.42925 
Adjusted R-squared 0.999836     S.D. dependent var  36.42827 
S.E. of regression 0.465842     Akaike info criterion  1.110864 
Sum squared resid 210.7154     Schwarz criterion  1.145832 
Durbin-Watson stat 1.942195 5%   Critical Value  

3%   Critical Value 
1% Critical Value 

2.10 
2.13 
2.15 

1.89 
1.87 
1.85 

ARCH Test on 
residuals:      
 

Obs*R-
squared 
0.39868 

Probability
 0.527433 

 

F-statistic 
0.52792 

Probability 
0.39868 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1: industrial production: actual values, GARCH model, Residuals 
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Fig. 2: Industrial production
Standardized Residuals

Sample 5 982Observations 978

Mean -0.048248
Median -0.009958
Maximum  5.277011
Minimum -5.217538
Std. Dev.  0.999358
Skewness -0.239272
Kurtosis  6.706783



 

 
Fig. 3: industrial production, recurrence plot 

Tab 2: industrial production    
Obs : N =981 SD/Spread=0.08      

ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 
0.2 2 411595 361646 0.51 0.06 8.10 0.17 
0.2 4 411595 289045 1.81 0.18 10.24 0.31 
0.2 6 411595 236374 2.84 0.26 10.82 0.44 
0.2 8 411595 195377 3.47 0.31 11.05 0.56 
0.2 10 411595 163324 3.83 0.34 11.38 0.67 

0.12 2 327561 238317 0.93 0.10 9.55 0.33 
0.12 4 327561 140982 2.37 0.18 13.53 0.58 
0.12 6 327561 90856 2.75 0.17 16.42 0.79 
0.12 8 327561 61569 2.55 0.13 19.74 0.98 
0.12 10 327561 43908 2.20 0.09 24.65 1.14 
0.08 2 232510 125399 0.82 0.08 9.80 0.52 
0.08 4 232510 45353 1.23 0.08 16.00 0.91 
0.08 6 232510 19305 0.86 0.04 22.73 1.25 
0.08 8 232510 9328 0.52 0.01 34.62 1.53 
0.08 10 232510 4898 0.30 0.01 56.58 1.78 

Tab 3: indudrial production after randomization    
ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 

0.2 2 406397 348105 -0.08 0.06 -1.21 0.19 
0.2 4 406397 255441 -0.17 0.18 -0.94 0.38 
0.2 6 406397 187886 -0.18 0.26 -0.67 0.57 
0.2 8 406397 137479 -0.22 0.31 -0.69 0.77 
0.2 10 406397 101340 -0.17 0.34 -0.51 0.95 

0.12 2 323688 219011 -0.17 0.10 -1.73 0.37 
0.12 4 323688 99103 -0.31 0.18 -1.77 0.74 
0.12 6 323688 44915 -0.25 0.17 -1.47 1.12 
0.12 8 323688 19903 -0.19 0.13 -1.48 1.51 
0.12 10 323688 9009 -0.11 0.09 -1.24 1.89 
0.08 2 229970 109411 -0.16 0.08 -1.92 0.57 
0.08 4 229970 24260 -0.15 0.08 -1.88 1.15 
0.08 6 229970 5456 -0.05 0.04 -1.39 1.73 
0.08 8 229970 1203 -0.02 0.02 -1.21 2.32 
0.08 10 229970 283 0.00 0.01 -0.83 2.88 



Tab 4: transportation equipment production  
ADF Test Statistic -3.90     1%   Critical Value -3.97 

      5%   Critical Value -3.42 
      10% Critical Value -3.13 

Model: Y(t) = 0.09+0.97*Y(t-1) + 6.46E-0.5*t+ εt 
σt

2 =4.11E-04+0.41σt-1
2 +0.31εt-1

2 
Variable Coefficient Std. Error t-Statistic Prob.   

Y(t-1) 0.974117 0.008099 120.274 0 
Intercept 0.0874 0.027695 3.15586 0.0016 
TREND 6.46E-05 2.08E-05 3.106805 0.0019 

C 0.000411 0.000142 2.904026 0.0037 
ARCH(1) 0.407139 0.121736 3.344442 0.0008 

GARCH(1) 0.31031 0.146487 2.118341 0.0341 
R-squared 0.99463     Mean dependent var  4.088223 
Adjusted R-squared 0.994587     S.D. dependent var  0.486078 
S.E. of regression 0.035761     Akaike info criterion  -4.10689 
Sum squared resid 0.801854     Schwarz criterion  -4.06471 
Durbin-Watson stat 1.877671 5%   Critical Value  

3%   Critical Value 
1% Critical Value 

2.13 
2.16 
2.19 

1.86 
1.84 
1.81 

ARCH Test on 
residuals:      
 

Obs*R-
squared 

0.015523 

Probability
 0.900848 

 

F-statistic 
0.015474 

Probability 
0.901043 

Tab 5: industrial machinery production  
ADF Test Statistic -3.80     1%   Critical Value -3.98 

      5%   Critical Value -3.42 
      10% Critical Value -3.13 

Model:   
Y(t) = 0.04+0.98*Y(t-1) +0.31*[Y(t-1)-Y(t-2)]+0.30*[Y(t-2)-Y(t-3)]+ 7.26E-0.5*t+ εt 
σt

2 =4.49E-05+0.60σt-1
2 +0.15εt-1

2 
Variable Coefficient Std. Error t-Statistic Prob.   

Y(t-1) 0.983132 0.003838 256.1834 0 
Y(t-1)-Y(t-2) 0.313914 0.034976 8.975011 0 
Y(t-2)-Y(t-3) 0.297845 0.036973 8.055791 0 

Intercept 0.043703 0.0099 4.414574 0 
TREND 7.26E-05 1.59E-05 4.576668 0 

C 4.49E-05 1.97E-05 2.279031 0.0227 
ARCH(1) 0.150593 0.052901 2.846704 0.0044 

GARCH(1) 0.602048 0.136423 4.413111 0 
R-squared 0.999669     Mean dependent var  3.854838 
Adjusted R-squared 0.999665     S.D. dependent var  0.751639 
S.E. of regression 0.013757     Akaike info criterion  -5.76243 
Sum squared resid 0.117709     Schwarz criterion  -5.70597 
Durbin-Watson stat 1.872385 5%   Critical Value  

3%   Critical Value 
1% Critical Value 

2.13 
2.16 
2.19 

1.86 
1.84 
1.81 

ARCH Test on 
residuals:      
 

Obs*R-
squared 

2.503256 

Probability
 0.286039 

 

F-statistic 
1.250634 

Probability 
0.287039 

Tab 6: electric machinery production  
ADF Test Statistic -2.77     1%   Critical Value -3.98 

      5%   Critical Value -3.42 
      10% Critical Value -3.13 

Model:   
Y(t) = 0.07+0.96*Y(t-1) +0.16*[Y(t-1)-Y(t-2)]+0.21*[Y(t-2)-Y(t-3)]+ 2.15E-0.4*t+ εt 
σt

2 =8.36E-05+0.50σt-1
2 +0.29εt-1

2 
Variable Coefficient Std. Error t-Statistic Prob.   

Y(t-1) 0.96001 0.007401 129.7157 0 
Y(t-1)-Y(t-2) 0.160769 0.046921 3.426395 0.0006 
Y(t-2)-Y(t-3) 0.207996 0.042557 4.887463 0 

Intercept 0.07286 0.012766 5.707498 0 
TREND 0.000215 4.07E-05 5.277838 0 

C 8.36E-05 2.24E-05 3.733987 0.0002 
ARCH(1) 0.288022 0.071686 4.017817 0.0001 

GARCH(1) 0.509315 0.092626 5.498605 0 
R-squared 0.999269     Mean dependent var  2.989646 
Adjusted R-squared 0.999258     S.D. dependent var  0.735146 
S.E. of regression 0.020027     Akaike info criterion  -5.125052 
Sum squared resid 0.182896     Schwarz criterion  -5.053674 
Durbin-Watson stat 1.810907 5%   Critical Value  

3%   Critical Value 
1% Critical Value 

2.15 
2.18 
2.21 

1.85 
1.81 
1.78 

ARCH Test on 
residuals:      
 

Obs*R-
squared 

0.205277 

Probability
 0.650495 

 

F-statistic 
0.204481 

Probability 
0.651341 



Tab 7: Hi-Tech    
ADF Test Statistic  0.578766     1%   Critical Value -3.9854 

      5%   Critical Value -3.4230 
      10% Critical Value -3.1341 

Model:   
Y(t) = 1.00*Y(t-1) +0.27*[Y(t-1)-Y(t-2)]+0.29*[Y(t-2)-Y(t-3)]+ 3.89E-0.5*t+ εt 
σt

2 =3.89E-05+0.68σt-1
2 +0.12εt-1

2 
Variable Coefficient Std. Error t-Statistic Prob.   

Y(t-1) 1.001579 0.00027 3715.943 0 
Y(t-1)-Y(t-2) 0.265929 0.056883 4.675001 0 
Y(t-2)-Y(t-3) 0.292968 0.056174 5.215386 0 

TREND 3.89E-05 2.04E-05 1.908155 0.0564 
ARCH(1) 0.122328 0.048225 2.53659 0.0112 

GARCH(1) 0.677888 0.13518 5.014715 0 
R-squared 0.999896     Mean dependent var  3.626309 
Adjusted R-squared 0.999895     S.D. dependent var  1.360402 
S.E. of regression 0.013931     Akaike info criterion  -5.749052 
Sum squared resid 0.074525     Schwarz criterion  -5.688035 
Durbin-Watson stat 2.031761 5%   Critical Value  

3%   Critical Value 
1% Critical Value 

2.17 
2.20 
2.23 

1.83 
1.80 
1.74 

ARCH Test on 
residuals:      
 

Obs*R-
squared 
0.14387 

Probability
 0.704464 

 

F-statistic 
0.143183 

Probability 
0.705345 

tab 8: employment    
ADF Test Statistic -4.205271     1%   Critical Value -3.9754 

      5%   Critical Value -3.4182 
      10% Critical Value -3.1313 

Model:   
Y(t) = 0.19+0.98*Y(t-1) +0.23*[Y(t-1)-Y(t-2)]+0.23*[Y(t-2)-Y(t-3)]+0.17*[Y(t-3)-Y(t-4)] 
+3.11E-0.5*t+ εt 
σt

2 =9.41E-06+0.60σt-1
2 +0.15εt-1

2 
Variable Coefficient Std. Error t-Statistic Prob.   

Y(t-1) 0.982307 0.003917 250.7972 0 
Y(t-1)-Y(t-2) 0.229051 0.061435 3.728361 0.0002 
Y(t-2)-Y(t-3) 0.223686 0.046996 4.75968 0 
Y(t-3)-Y(t-4) 0.165958 0.055108 3.011501 0.0026 

Intercept 0.186283 0.040823 4.563192 0 
TREND 3.11E-05 7.39E-06 4.214051 0 

C 9.41E-06 3.23E-06 2.916529 0.0035 
ARCH(1) 0.15 0.111295 1.347765 0.1777 

GARCH(1) 0.6 0.117113 5.123254 0 
R-squared 0.999899     Mean dependent var  11.12976 
Adjusted R-squared 0.999898     S.D. dependent var  0.379236 
S.E. of regression 0.003829     Akaike info criterion  -8.245976 
Sum squared resid 0.010481     Schwarz criterion  -8.188983 
Durbin-Watson stat 2.020042 5%   Critical Value  

3%   Critical Value 
1% Critical Value 

2.12 
2.15 
2.17 

1.88 
1.85 
1.83 

ARCH Test on 
residuals:      
 

Obs*R-
squared 

0.563179 

Probability
 0.452982 

 

F-statistic 
0.562058 

Probability 
0.453677 

 
tab 9: hourly earnings of production workers  
ADF Test Statistic -1.066504     1%   Critical Value -3.9742 

      5%   Critical Value -3.4176 
      10% Critical Value -3.1309 

Model:   
Y(t) = 0.01+1.00*Y(t-1) +0.13*[Y(t-1)-Y(t-2)]+0.09*[Y(t-2)-Y(t-3)]+0.18*[Y(t-3)-Y(t-4)] -
4.33E-0.5*t+ εt 
σt

2 =5.67E-06+0.71σt-1
2 +0.21εt-1

2 
Variable Coefficient Std. Error t-Statistic Prob.   

Y(t-1) 1.009338 0.001686 598.5128 0 
Y(t-1)-Y(t-2) 0.126885 0.061628 2.058879 0.0395 
Y(t-2)-Y(t-3) 0.091454 0.048557 1.883432 0.0596 
Y(t-3)-Y(t-4) 0.189606 0.04888 3.879028 0.0001 

Intercept 0.01023 0.001032 9.915531 0 
TREND -4.33E-05 6.93E-06 -6.254606 0 

C 5.67E-06 1.69E-06 3.362442 0.0008 
ARCH(1) 0.212312 0.148577 1.428968 0.153 

GARCH(1) 0.709285 0.080719 8.787132 0 
R-squared 0.999929     Mean dependent var  1.075365 
Adjusted R-squared 0.999929     S.D. dependent var  1.038719 
S.E. of regression 0.008779     Akaike info criterion  -7.457538 
Sum squared resid 0.061578     Schwarz criterion  -7.405247 
Durbin-Watson stat 1.985708 5%   Critical Value  

3%   Critical Value 
1% Critical Value 

2.12 
2.14 
2.16 

1.88 
1.86 
1.84 

ARCH Test on 
residuals:      
 

Obs*R-
squared 

0.628651 

Probability
 0.427851 

 

F-statistic 
0.627582 

Probability 
0.428477 



Tab 10: Consumer Price Index   
ADF Test Statistic -0.846908     1%   Critical Value -3.9719 

      5%   Critical Value -3.4165 
      10% Critical Value -3.1302 

Model:   
Y(t) = -5.17E-03+1.00*Y(t-1) +0.31*[Y(t-1)-Y(t-2)]+0.15*[Y(t-2)-Y(t-3)]+0.22*[Y(t-3)-
Y(t-4)] -7.57E-0.6*t+ εt 
σt

2 =6.20E-06+0.60σt-1
2 +0.15εt-1

2 
Variable Coefficient Std. Error t-Statistic Prob.   

Y(t-1) 1.002717 0.000524 1915.222 0 
Y(t-1)-Y(t-2) 0.314714 0.04027 7.815017 0 
Y(t-2)-Y(t-3) 0.154939 0.042976 3.605285 0.0003 
Y(t-3)-Y(t-4) 0.219484 0.051788 4.238104 0 

Intercept -0.005174 0.000989 -5.229768 0 
TREND -7.57E-06 1.80E-06 -4.208366 0 

C 6.20E-06 2.99E-06 2.075324 0.038 
ARCH(1) 0.153316 0.123373 1.242702 0.214 

GARCH(1) 0.602011 0.192731 3.123577 0.0018 
R-squared 0.99995     Mean dependent var  3.510637 
Adjusted R-squared 0.99995     S.D. dependent var  0.836057 
S.E. of regression 0.005927     Akaike info criterion  -7.71261 
Sum squared resid 0.036119     Schwarz criterion  -7.6697 
Durbin-Watson stat 1.969541 5%   Critical Value  

3%   Critical Value 
1% Critical Value 

2.10 
2.12 
2.14 

1.90 
1.88 
1.86 

ARCH Test on 
residuals:      
 

Obs*R-
squared 

2.473278 

Probability
 0.115796 

 

F-statistic 
2.474411 

Probability 
0.116019 

Tab 11: maximal liapunov exponents M=1 M=2 M=3 M=4 M=5 
Uniform i.i.d. process 3.40 1.41 1.24 0.77 0.85 
Gaussian i.i.d. process 2.53 0.75 0.44 0.33 0.30 
Industrial production 2.61 0.81 0.45 0.32 0.31 
transportation eq. production 2.00 0.66 0.44 0.35 0.35 
industrial machinery and eq. 1.93 0.63 0.35 0.28 0.26 
electrical machinery  1.70 0.57 0.32 0.23 0.27 
Hi-Tech   1.58 0.52 0.30 0.28 0.27 
employment  1.55 0.67 036 0.30 0.27 
hourly earnings  1.92 1.45 0.94 0.80 0.66 
consumer price index  2.13 0.80 0.46 0.34 0.30 

 
 
 
 
 
 
 
 
 
 

Fig. 4: Transportation equipment production: actual values, GARCH model, Residuals 
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Fig 5: Transpotation eq. prod.
Series: Standardized Residuals

Sample 2 634Observations 633

Mean -0.027365
Median  0.052255
Maximum  4.447432
Minimum -7.637314
Std. Dev.  0.989127
Skewness -1.952752
Kurtosis  15.93459
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Fig. 6: Industrial machinery production: actual values, GARCH model, Residuals 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Electric machinery production: actual values, GARCH model, Residuals 
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Fig 7: industrial mach. prod.
Standardized Residuals

Sample 5 634Observations 630

Mean -0.029108
Median  0.052560
Maximum  4.468858
Minimum -3.397197
Std. Dev.  1.015118
Skewness -0.195088
Kurtosis  3.844262
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Fig. 9: electric machinery production: 
Standardized Residuals 

Sample 5 468 Observations 464 
Mean     -0.036564 
Median  -0.021975 
Maximum   4.045548 
Minimum  -4.285570 
Std. Dev.    1.000011 
Skewness   -0.184560 
Kurtosis    4.426845 

  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 10: Hi-Tech production: actual values, GARCH model, Residuals 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12: Employment: actual level, GARCH model, Residuals 
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Fig. 11 Hi-Tech production:
Standardized Residuals

Sample 5 394Observations 390
Mean -0.006667
Median -0.002427
Maximum  3.837274
Minimum -6.226926
Std. Dev.  1.001157
Skewness -0.570892
Kurtosis  7.285860
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Fig. 13: Employment
 Standardized Residuals

Sample 5 728  Observations 724
Mean -0.015987
Median  0.002652
Maximum  2.907456
Minimum -8.182487
Std. Dev.  0.638225
Skewness -3.252118
Kurtosis  43.45859



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14: Hourly wages: actual level, GARCH model, Residuals 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16: Consumer price index: actual level, GARCH model, Residuals 
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Fig. 15: Hourly wages
 Standardized Residuals

Sample 5 812  Observations 808
Mean -0.023235
Median -0.032950
Maximum  7.321643
Minimum -3.595514
Std. Dev.  0.877188
Skewness  0.710590
Kurtosis  11.10385
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Fig. 17: Consumer price index
 Standardized Residuals

Sample 6 1042   Observations
1037

Mean  0.114499
Median  0.085245
Maximum  8.297400
Minimum -4.077784
Std. Dev.  1.013420
Skewness  0.615866
Kurtosis  9.280853

Jarque-Bera  1770.084
Probability  0.000000



 

 
Fig. 18: Transportation equipment production, recurrence plot            Fig. 19: industrial machinery production, recurrence plot 

 

Fig. 20: electric machinery production, recurrence plot            Fig. 21: Hi-Tech production, recurrence plot 

Fig. 22: employment, recurrence plot    Fig. 23: hourly earnings, recurrence plot 



 
 

Fig. 24: consumer price index, recurrence plot   Fig. 25: recurrence plot of pseudo rasndom  numbers 
     from a uniform i.i.d. distribution 

 

Tab 12:  transportation eq. production     
Obs : N=633  SD/Spread=0.08     

ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 
0.16 2 177341 161933 0.66 0.07 9.92 0.12 
0.16 4 177341 138401 2.03 0.20 10.31 0.20 
0.16 6 177341 118015 2.85 0.31 9.22 0.29 
0.16 8 177341 99941 3.23 0.39 8.24 0.38 
0.16 10 177341 84470 3.36 0.44 7.56 0.47 
0.09 2 144660 113856 1.21 0.10 11.55 0.24 
0.09 4 144660 74608 2.59 0.21 12.37 0.41 
0.09 6 144660 49263 2.69 0.22 12.08 0.59 
0.09 8 144660 32803 2.32 0.19 12.19 0.76 
0.09 10 144660 21981 1.85 0.15 12.63 0.93 
0.05 2 101004 59348 1.07 0.09 11.46 0.41 
0.05 4 101004 22808 1.26 0.09 13.51 0.74 
0.05 6 101004 8921 0.72 0.05 14.58 1.06 
0.05 8 101004 3873 0.39 0.02 18.41 1.35 
0.05 10 101004 1766 0.20 0.01 24.60 1.61 

 
Tab 13:  industrial machinery production     

Obs : N=633  SD/Spread=0.15     
ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 

0.2 2 149659 114908 0.28 0.07 3.98 0.34 
0.2 4 149659 68946 0.65 0.15 4.20 0.66 
0.2 6 149659 42685 0.83 0.18 4.70 0.95 
0.2 8 149659 27111 0.85 0.16 5.18 1.24 
0.2 10 149659 17504 0.76 0.14 5.61 1.51 

0.12 2 106384 59251 0.29 0.07 4.06 0.58 
0.12 4 106384 18993 0.34 0.08 4.26 1.12 
0.12 6 106384 6470 0.23 0.05 4.86 1.64 
0.12 8 106384 2268 0.12 0.02 5.30 2.14 
0.12 10 106384 801 0.05 0.01 5.61 2.63 
0.08 2 69972 25954 0.17 0.04 3.87 0.79 
0.08 4 69972 3736 0.09 0.02 4.13 1.54 
0.08 6 69972 583 0.03 0.01 4.79 2.26 
0.08 8 69972 86 0.01 0.00 4.39 3.01 
0.08 10 69972 15 0.00 0.00 5.52 3.68 



Tab 14:  electrical machinery production     
Obs : N=633  SD/Spread=0.12     

ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 
0.2 2 85710 70416 0.47 0.07 6.34 0.26 
0.2 4 85710 49753 1.37 0.18 7.72 0.48 
0.2 6 85710 36053 1.82 0.23 7.99 0.68 
0.2 8 85710 26631 1.95 0.23 8.31 0.87 
0.2 10 85710 19800 1.86 0.22 8.57 1.05 

0.12 2 63306 40057 0.59 0.08 6.89 0.47 
0.12 4 63306 17844 1.02 0.11 9.01 0.86 
0.12 6 63306 8275 0.79 0.08 9.76 1.23 
0.12 8 63306 3921 0.49 0.05 10.64 1.58 
0.12 10 63306 1848 0.27 0.02 11.49 1.94 
0.08 2 42416 18661 0.40 0.06 7.17 0.68 
0.08 4 42416 4323 0.35 0.03 10.41 1.25 
0.08 6 42416 1058 0.13 0.01 12.18 1.79 
0.08 8 42416 281 0.05 0.00 15.54 2.31 
0.08 10 42416 92 0.02 0.00 24.97 2.74 

Tab 15:  HI-TECH      
Obs : N=393  SD/Spread=0.16    

ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 
0.2 2 62853 52644 0.22 0.06 3.35 0.23 
0.2 4 62853 37901 0.71 0.17 4.21 0.43 
0.2 6 62853 28258 1.15 0.23 4.95 0.61 
0.2 8 62853 21214 1.33 0.26 5.15 0.79 
0.2 10 62853 16094 1.36 0.26 5.32 0.96 

0.12 2 47571 31242 0.41 0.09 4.63 0.42 
0.12 4 47571 14411 0.75 0.13 5.65 0.79 
0.12 6 47571 7053 0.68 0.11 6.34 1.14 
0.12 8 47571 3473 0.46 0.07 6.65 1.47 
0.12 10 47571 1685 0.27 0.04 6.73 1.82 
0.08 2 32490 15031 0.31 0.07 4.75 0.63 
0.08 4 32490 3655 0.30 0.05 6.42 1.18 
0.08 6 32490 944 0.13 0.02 7.22 1.70 
0.08 8 32490 279 0.05 0.01 9.48 2.18 
0.08 10 32490 76 0.02 0.00 10.72 2.68 

Tab 16  Employment     
Obs : N=729  SD/Spread=0.07     

ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 
0.1 2 230569 210595 0.83 0.07 11.61 0.09 
0.1 4 230569 179862 2.43 0.21 11.64 0.16 
0.1 6 230569 158349 3.92 0.33 12.03 0.22 
0.1 8 230569 141379 5.03 0.41 12.34 0.27 
0.1 10 230569 128152 5.90 0.46 12.90 0.31 

0.05 2 179060 132962 1.11 0.11 9.84 0.23 
0.05 4 179060 82858 2.69 0.20 13.22 0.38 
0.05 6 179060 59024 3.38 0.19 17.37 0.50 
0.05 8 179060 44535 3.36 0.15 22.37 0.59 
0.05 10 179060 34742 3.04 0.10 29.28 0.67 
0.03 2 109230 53095 0.79 0.08 10.16 0.43 
0.03 4 109230 17147 0.96 0.05 18.07 0.74 
0.03 6 109230 7424 0.63 0.02 32.38 0.97 
0.03 8 109230 3902 0.38 0.01 66.41 1.14 
0.03 10 109230 2170 0.22 0.00 145.63 1.30 

Tab 17  Hourly earnings of production 
workers 

    

Obs : N=811  SD/Spread=0.05      
ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 

0.1 2 303634 287595 0.48 0.04 11.81 0.05 
0.1 4 303634 261631 1.59 0.13 11.98 0.10 
0.1 6 303634 242938 2.89 0.23 12.55 0.13 
0.1 8 303634 228276 4.15 0.32 12.94 0.15 
0.1 10 303634 216534 5.32 0.40 13.35 0.18 

0.05 2 250446 204795 1.13 0.11 10.68 0.16 
0.05 4 250446 148850 3.17 0.24 13.36 0.26 
0.05 6 250446 116198 4.40 0.28 15.51 0.34 
0.05 8 250446 94096 4.88 0.27 17.83 0.42 
0.05 10 250446 79655 5.04 0.24 21.34 0.47 
0.03 2 167734 101009 1.30 0.10 12.52 0.32 
0.03 4 167734 45591 2.01 0.11 18.65 0.53 
0.03 6 167734 24154 1.60 0.06 26.89 0.71 
0.03 8 167734 13560 1.06 0.03 39.89 0.86 
0.03 10 167734 8101 0.68 0.01 64.14 1.00 



Tab 18 c.p.i       
Obs : N=1041  SD/Spread=0.08     

ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 
0.13 2 462040 406138 0.57 0.07 8.61 0.14 
0.13 4 462040 328457 2.18 0.18 11.76 0.24 
0.13 6 462040 279585 3.87 0.27 14.12 0.32 
0.13 8 462040 248799 5.45 0.33 16.65 0.38 
0.13 10 462040 225992 6.62 0.35 18.92 0.42 
0.07 2 342027 238672 1.28 0.10 12.49 0.31 
0.07 4 342027 140553 3.18 0.16 19.88 0.51 
0.07 6 342027 97769 3.76 0.13 28.38 0.64 
0.07 8 342027 75419 3.70 0.09 41.70 0.74 
0.07 10 342027 60409 3.32 0.05 62.39 0.82 
0.04 2 215075 103623 1.06 0.07 15.04 0.50 
0.04 4 215075 32849 1.15 0.04 25.89 0.86 
0.04 6 215075 13134 0.66 0.01 44.14 1.14 
0.04 8 215075 6059 0.35 0.00 84.85 1.37 
0.04 10 215075 3088 0.18 0.00 184.93 1.58 

Tab 19  Shuffled transportation eq. 
production 

    

ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 
0.16 2 172558 152063 -0.02 0.07 -0.28 0.14 
0.16 4 172558 118389 -0.01 0.20 -0.03 0.27 
0.16 6 172558 92085 -0.01 0.31 -0.02 0.41 
0.16 8 172558 72678 0.13 0.39 0.33 0.54 
0.16 10 172558 57437 0.22 0.44 0.49 0.67 
0.09 2 140365 100687 0.00 0.10 -0.03 0.28 
0.09 4 140365 52907 0.14 0.21 0.66 0.55 
0.09 6 140365 27588 0.12 0.22 0.53 0.82 
0.09 8 140365 14840 0.14 0.19 0.77 1.08 
0.09 10 140365 7887 0.11 0.14 0.76 1.35 
0.05 2 97643 48448 -0.04 0.09 -0.40 0.47 
0.05 4 97643 12638 0.06 0.09 0.71 0.93 
0.05 6 97643 3319 0.04 0.05 0.81 1.39 
0.05 8 97643 891 0.02 0.02 0.90 1.84 
0.05 10 97643 240 0.01 0.01 0.91 2.29 

Tab 20  Shuffled machinery eq. production     
ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 

0.20 2 147062 110417 -0.02 0.07 -0.25 0.35 
0.20 4 147062 61827 -0.08 0.15 -0.55 0.71 
0.20 6 147062 34463 -0.11 0.18 -0.62 1.08 
0.20 8 147062 18540 -0.18 0.16 -1.13 1.46 
0.20 10 147062 9727 -0.20 0.13 -1.51 1.86 
0.12 2 104451 55557 -0.03 0.07 -0.38 0.60 
0.12 4 104451 15518 -0.05 0.08 -0.62 1.21 
0.12 6 104451 4340 -0.02 0.05 -0.53 1.82 
0.12 8 104451 1139 -0.02 0.02 -0.90 2.46 
0.12 10 104451 287 -0.01 0.01 -1.13 3.12 
0.08 2 68682 23851 -0.03 0.04 -0.78 0.82 
0.08 4 68682 2740 -0.03 0.02 -1.43 1.66 
0.08 6 68682 337 0.00 0.01 -0.70 2.47 
0.08 8 68682 41 0.00 0.00 -0.48 3.29 
0.08 10 68682 1 0.00 0.00 -2.84 4.73 

Tab 21  Shuffled electrical machinery     
ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 

0.20 2 80029 62769 -0.07 0.07 -0.98 0.30 
0.20 4 80029 38655 -0.13 0.18 -0.72 0.60 
0.20 6 80029 23561 -0.18 0.22 -0.81 0.90 
0.20 8 80029 14419 -0.16 0.23 -0.72 1.21 
0.20 10 80029 8529 -0.20 0.21 -0.96 1.54 
0.12 2 58806 33454 -0.13 0.08 -1.58 0.53 
0.12 4 58806 10892 -0.12 0.11 -1.08 1.06 
0.12 6 58806 3453 -0.08 0.08 -1.10 1.61 
0.12 8 58806 1131 -0.03 0.04 -0.81 2.15 
0.12 10 58806 359 -0.02 0.02 -0.76 2.70 
0.08 2 39255 14780 -0.09 0.05 -1.60 0.75 
0.08 4 39255 2061 -0.04 0.03 -1.42 1.51 
0.08 6 39255 281 -0.01 0.01 -1.27 2.29 
0.08 8 39255 42 0.00 0.00 -0.76 3.02 
0.08 10 39255 6 0.00 0.00 -0.61 3.78 



Tab 22  Shuffled Hi-Tech     
ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 

0.20 2 60924 50005 -0.06 0.07 -0.84 0.24 
0.20 4 60924 33459 -0.17 0.17 -1.02 0.49 
0.20 6 60924 21733 -0.39 0.24 -1.66 0.76 
0.20 8 60924 14428 -0.36 0.26 -1.37 1.01 
0.20 10 60924 9830 -0.24 0.26 -0.91 1.25 
0.12 2 46240 28872 -0.01 0.09 -0.16 0.45 
0.12 4 46240 11197 -0.03 0.14 -0.24 0.90 
0.12 6 46240 3995 -0.12 0.11 -1.07 1.39 
0.12 8 46240 1499 -0.06 0.07 -0.90 1.86 
0.12 10 46240 590 -0.02 0.04 -0.58 2.31 
0.08 2 31631 13566 0.01 0.07 0.12 0.66 
0.08 4 31631 2483 0.00 0.05 0.03 1.32 
0.08 6 31631 392 -0.02 0.02 -0.90 2.03 
0.08 8 31631 53 -0.01 0.01 -1.42 2.81 
0.08 10 31631 9 0.00 0.00 -1.06 3.50 

Tab 23  Shuffled employment     
ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 

0.10 2 227858 199499 -5.49E-02 7.16E-02 -7.67E-01 0.11 
0.10 4 227858 152004 -2.24E-01 2.10E-01 -1.07E+00 0.23 
0.10 6 227858 115652 -3.28E-01 3.26E-01 -1.01E+00 0.35 
0.10 8 227858 89030 -2.64E-01 4.08E-01 -6.47E-01 0.46 
0.10 10 227858 68608 -2.04E-01 4.56E-01 -4.47E-01 0.58 
0.05 2 176738 119070 -1.32E-01 1.13E-01 -1.17E+00 0.26 
0.05 4 176738 53835 -2.04E-01 2.03E-01 -1.01E+00 0.52 
0.05 6 176738 23350 -2.64E-01 1.93E-01 -1.36E+00 0.80 
0.05 8 176738 10639 -1.42E-01 1.49E-01 -9.58E-01 1.07 
0.05 10 176738 4963 -6.31E-02 1.02E-01 -6.17E-01 1.32 
0.03 2 107740 43840 -9.16E-02 7.73E-02 -1.18E+00 0.48 
0.03 4 107740 7127 -6.03E-02 5.28E-02 -1.14E+00 0.98 
0.03 6 107740 987 -3.57E-02 1.92E-02 -1.86E+00 1.51 
0.03 8 107740 149 -8.39E-03 5.67E-03 -1.48E+00 2.02 
0.03 10 107740 26 -1.42E-03 1.50E-03 -9.44E-01 2.50 

Tab 24 
 

 Shuffled hourly earnings of 
prduction workers 

    

ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 
0.10 2 297431 276887 0.07 0.04 1.68 0.06 
0.10 4 297431 239692 0.16 0.13 1.17 0.12 
0.10 6 297431 206709 0.15 0.23 0.65 0.19 
0.10 8 297431 178461 0.16 0.32 0.50 0.25 
0.10 10 297431 154444 0.20 0.40 0.49 0.32 
0.05 2 244999 190013 0.24 0.11 2.23 0.17 
0.05 4 244999 115436 0.52 0.24 2.21 0.34 
0.05 6 244999 68797 0.42 0.28 1.50 0.51 
0.05 8 244999 40386 0.26 0.27 0.97 0.69 
0.05 10 244999 23804 0.17 0.23 0.74 0.87 
0.03 2 164183 86015 0.17 0.10 1.59 0.36 
0.03 4 164183 24878 0.25 0.11 2.29 0.69 
0.03 6 164183 7295 0.13 0.06 2.24 1.03 
0.03 8 164183 2002 0.04 0.03 1.62 1.38 
0.03 10 164183 506 0.01 0.01 0.90 1.75 

Tab 25  Shuffled c.p.i.     
ε m C1,N *N*(N-1)/2 Cm,N *N*(N-1)/2 BDS SD Wm,N dm 

0.13 2 449619 387089 0.12 0.07 1.73 0.15 
0.13 4 449619 288325 0.34 0.19 1.85 0.29 
0.13 6 449619 212739 0.32 0.27 1.17 0.44 
0.13 8 449619 156115 0.23 0.33 0.72 0.59 
0.13 10 449619 114191 0.15 0.35 0.43 0.75 
0.07 2 332053 212774 0.16 0.10 1.60 0.34 
0.07 4 332053 87059 0.18 0.16 1.14 0.68 
0.07 6 332053 35031 0.08 0.13 0.64 1.02 
0.07 8 332053 14114 0.04 0.09 0.45 1.36 
0.07 10 332053 5713 0.02 0.05 0.38 1.70 
0.04 2 208471 84076 0.08 0.07 1.10 0.56 
0.04 4 208471 13326 0.02 0.04 0.36 1.12 
0.04 6 208471 2053 0.00 0.01 -0.04 1.70 
0.04 8 208471 319 0.00 0.00 -0.10 2.27 
0.04 10 208471 55 0.00 0.00 0.24 2.81 
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