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Abstract
The presence of structural breaks can seriously affect the outcome of
standard regression methods like OLS. Although there are many
methods available to deal with them, we focus here on a particular
linear filtering method, namely the Kalman Filter. Its results vis a vis
a regular OLS approach are illustrated by testing the sectoral shift
hypothesis in the Netherlands. Although a rather simplified version of
the Kalman Filter is used, it turns out to be a sufficient enough
approximation. What we find, is that the variables capturing the
sectoral shift hypothesis are the most important in explaining Dutch
unemployment behaviour during the postwar period. Thus, the hypo-
thesis is endorsed. On the other hand, our highly significant constant
term indicates that the inclusion of other variables affecting unemploy-
ment may alter the results. Our conclusion thus is a tentative one.
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1. Introduction
Analyzing structural breaks in time series forms an important part of

economic literature1. Also, there is a huge body of work in econometrics on
this subject2. In the latter category, one can distinguish two approaches to
deal with structural breaks. These approaches are:

1. Estimating a model as if no structural breaks were present and then
testing whether this is correct (called ex-post methods);

2. Allowing for the presence of structural breaks right from the start by
choosing an estimation method that takes (possibly) varying parameter
values into account (called ex-ante methods).

The first approach is by far the most commonly used, and includes
methods like the Chow-Test (or variations on it). However, the second
approach is the most appealing, but has had little practical use in economic
literature over the past few years. It is a particular subset of methods in the
latter approach that will be discussed in this paper, namely the Kalman
Filter.

After a general introduction to structural breaks, the Kalman Filter will be
formally presented in the second Section. Then, in Section 3, it will be
applied to a model explaining sectoral shifts in the Dutch unemployment
rate during the postwar period. Finally, Section 4 comprises some general
conclusions and guidelines for further research.

2. The Kalman Filter
What are ’structural breaks’? This is a question that cannot be answered

immediately. A concept like a ’break’ implies a degree of change, which
needs measurement. From an economic point of view, these changes include
shifts in the composition of output or input vectors. For example, (persis-
tent) changes in (sectoral) imports and exports, in the composition of the
labour force or GDP can be viewed as structural breaks. However, taking
a statistical point of view, the notion of structural change is related to model
structure, focusing both on the variables defining the structure and the
parameters values associated with them.

Usually, when testing an economic model empirically, some form of
Ordinary Least Squares (OLS) or Generalized Least Squares (GLS) esti-
mation is applied to a predetermined (set of) equation(s). In doing so, we
assume constant regression coefficients over time (by construction). How-
ever, if they do change, these techniques will yield incorrect conclusions
with regard to the relationship being studied. Although there are methods
that can detect whether the assumption of constant regression coefficients
is valid, these are only applied afterwards. Methods one can think of
include Recursive Least Squares (RLS), One-Step Residuals and (Scaled
Recursive) Chow-Tests. Charemza and Deadman (1992) discuss these
methods in detail.

1 See for example Maddison and van der Wee (1994) and Vilares (1986).

2 Like Kraemer (ed.) (1989) and Broemeling and Tsurumi (1987). In 1982, a complete issue
of the Journal of Econometrics was dedicated to modelling structural breaks.
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One the other hand, we could opt for modelling coefficient variability ex-
ante. Then we would allow for stochastic regression coefficients right from
the start, whereas they were fixed in the previous, ex-post context3. One of
the methods available is the Kalman Filter, a linear filtering method
introduced by Kalman (1960) and first used in economics by Rosenberg
(1968). Its popularity grew steadily during the seventies and eighties4, but
since then, it has hardly been used in economics5. Any Kalman Filter
consists of two parts, namely:

1. A transition equation, which describes the evolution of a set of unobser-
vable, so-called state variables over time;

2. A measurement equation, which describes how well the actually observed
data are generated from the state variables.

In our context, the state variables would be the regression coefficients to
be estimated. Together, the transition and measurement equations constitute
a state space model. A general Kalman Filter can be formulated as follows:

where, Zt = (NxK) matrix;

(2.1)
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St = (NxM) matrix;
yt = (Nx1) vector;

αt = (Kx1) vector of state variables;
ct = non-stochastic (Kx1) vector;

Φt, Ψt = fixed (KxK) and (Kxm) matrices respectively;
δt, vt = M- and m-dimensional white noise vectors respectively.

It is assumed that the δt and vt terms are uncorrelated with both each
other and the prior state vector α0 (∀ t = 1,2,...,T). Furthermore, although the
variance of δt and vt may alter over time, their elements are assumed not be
correlated at different points in time.

The first equation in model (2.1) is an ordinary regression equation with
Time-Varying Parameters, whereas the second equation describes the
evolution of the parameters considered. The setup of the Kalman Filter is
very broad, and includes all ARMA (r,q) models6.

By means of the Kalman Filter, an estimator will be updated as soon as
new observations become available. This process consists of two parts. First,
an optimal prediction of the next observation is made, given all information
currently available. Then, the new observation is included in the estimator
of the state vector so that the estimates can be updated in the next round.

3 Although the estimated values of the regression coefficients were also stochastic previously.

4 For example, see Burmeister and Wall (1982), Conrad and Corrado (1979), Engle (1978) and
Howrey (1978).

5 Though recent applications include Amable and Luillard (1997) and Hall et al. (1992).

6 See Harvey (1981), pp. 103-104 for details.
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Usually, the data are assumed to follow a normal distribution. Yet, if this
assumption is relaxed, the Kalman Filter will still produce an ’optimal’
solution7. Given the recursive nature of the Kalman Filter in determining
estimates of αt (using new information on both yt and Zt), it can be called
a Bayesian method. Estimation takes place by means of Maximum
Likelihood techniques8.

The recursive nature of the Kalman Filter assures that shifts in variables
over time will be picked up as soon as they occur, so that the corresponding
shifts in parameter values will (only) be accounted for from that point in
time onwards. Thus, the fit of a model estimated by means of a Kalman
Filter should in general be at least comparable to, say, the fit generated by
the OLS procedure9.

Nevertheless, using techniques like the Kalman Filter to pick up structural
breaks assumes that a ’genuine’ break has occurred. Yet, it is extremely
difficult to distinguish between model misspecification and structural
breaks. Model specifications are irreversibly linked to structural changes and
breaks, and their possible effects should therefore be part of any model
structure.

Also, the data entering a model should be carefully checked a priori10.
Changes in, say, the aggregation of sectors or the measurement of variables
may point to ’structural’ breaks that are not structural in nature at all: they
are merely caused by alterations of definitions. Therefore, one should not
assume structural breaks to be present too soon, certainly if no obvious
economic reasons can be found for them.

In Section 3, structural changes in the Dutch unemployment rate between
1952-1993 will be analyzed using a simplified Kalman Filter setup. There,
we will mostly take an economic point of view regarding structural change.
That is to say, we will assume (at least, in principle) that the model
structure is a reasonable enough approximation of reality.

3. Model and Results
Generally, it takes time before workers who become unemployed find a

new job, even more when they change jobs between sectors (provided that
they find one). This labour reallocation process gives rise to cyclical
unemployment. But how is cyclical unemployment embedded in economic
theory?

7 Although then the concept of Minimum Mean Square (Linear) Estimators (MMSE) is of
importance, cf. Harvey (1981), pp. 104-105. Roughly speaking, the Kalman Filter assures that,
independent of the distribution of the data underlying the model, the prediction of the
estimation error between αt and at (the outcome of the model if αt was fixed) is minimized.

8 See Harvey (1981), Ch. 4.4 for details.

9 The OLS procedure can be shown to be a special case of the Kalman Filter, cf. Watson
(1983).

10 Although this is a topic often taken for granted.
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On the one hand, we could say that cyclical unemployment is a deviation
from a more or less stable natural rate. Alternatively, cyclical unemployment
could be defined as a fluctuation of the natural rate itself. The latter
perspective was introduced by Lilien (1982), and is called the sectoral shift
hypothesis. Over the years, many papers were issued on mostly American
data, showing evidence both in favour and against the hypothesis11.

In this Section, we will test the Lilien hypothesis using Dutch data. We
will do so by estimating a model with the Kalman Filter. This approach has
the advantage that we can use time series published by the Central Planning
Bureau (CPB) from 1950 onwards, although there have been revisions of the
data in 1969, 1977 and 1985 (leading to breaks in the original series).
Although the revisions have already been pulled back until 1977, using the
Kalman Filter ensures that the breaks that occur because of this show up in
the (residuals of the) transition equation12.

Lilien proxied the dispersion of employment by means of a weighted
standard deviation variable using sectoral employment data:

where, xit = employment in sector i (i = 1,2,...,N);
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. His method can be described as follows.σ̂
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Formula (3.1) will enter our analysis as a measure of Lilien’s sectoral shift
hypothesis. Following Barro (1977) and Mills (1996), we will try to explain
the Dutch unemployment rate as a function of its own lagged values,
money growth, interest rate changes and the dispersion measure depicted

11 See Mills (1996) for an overview. A more recent publication is Fortin and Araar (1997).

12 See also note 19.
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above. This implies that we will mainly use data stemming from a monetary
world. The interest and money variables are included to capture the
hypothesis that inflation and monetary policies, if unexpected, affect unem-
ployment duration. During the modelling process, the Hendry/LSE (a.k.a.
general to specific modelling) approach13 will be adopted. This means that we
will start with a very broad model, which will gradually be reduced to
reach a ’final’, smaller model. The following regression model will be initial-
ly estimated14:

where, ut = (national) unemployment rate;

(3.2
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Mt = money supply (M1)
15;

rt = short-term interest rate;
εt = random disturbance term;

i = 0,1,2,316.

We expect the interest rate variable to be negatively related to unemploy-
ment, whereas the opposite is assumed for the money variable. All other
variables can have either sign (although, leaving aside the constant term,
positive signs are the most likely).

In order to construct , is regressed17 on its own lagged value andσ̂p
t

σ̂
t

current and (once) lagged values of both Mt and rt (20 sectors are used in
the analysis). Also, the current value of the GDP price level (with 1985 as
a base year) is included in the regression to capture the influence of national

13 Cf. Hendry (1985).

14 As compared to model (2.1), we have set St, Φt and Ψt equal to identity matrices, and put
all elements of ct equal to zero (for reasons of simplicity). Furthermore, if the disturbance
term in the transition equation of model (3.2), vjit, were dropped, a RLS model would have
resulted. Thus in fact, we will be using a somewhat ’extended’ RLS model. See also note 28.
Information about data sources is given in Appendix A.

15 A narrow definition of money is used, cf. Pelloni (1992).

16 All variables are lagged three times following the work by Garcia-Ferrer et al. (1987).

17 Details about its calculation can be found in Appendix A.
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commodity prices. The residuals of this regression, estimated by OLS, enter

the calculation of according to model (3.1).σ̂p
t

In addition, the residuals of the measurement equation of model (3.2), εt,
are examined on the presence of a unit root. When a time series contains
one (or more) structural break(s), applying standard unit root tests like
Dickey-Fuller could erroneously lead to the conclusion that the series
contains a unit root, whereas in fact it does not. Although alternative
measures have been proposed18, it is here that the features of the Kalman
Filter come into view. Since it will pick up structural breaks by construc-
tion19, there is no need for applying alternative measures when testing for
a unit root: the standard Dickey-Fuller test will still be valid. However, if
we estimate the first equation of model (3.2) by OLS, then we would have
to resort to alternative measures. As an alternative to Dickey-Fuller, the
Phillips-Perron test will be used (which is a variation on Dickey-Fuller, able
to deal with structural breaks)20.

If a unit root turns out to be present in the (recursive) Kalman Filter
residuals anyway, we have to opt for expressing model (3.2) in first
differences: ut then becomes ut, and the first equation of model (3.2) would
have to be rearranged accordingly.

To test the sectoral shift hypothesis, we gradually reduce the size of
model (3.2), dropping insignificant variables one at a time, while testing for
the (statistical) acceptability hereof by means of Likelihood Ratio tests21.
We also try to eliminate variables with incorrect signs, and delete them even
if the t-test says that the coefficients do differ significantly from zero (as
long as we can conclude from the Likelihood Ratio test that they can be
dropped together with all other previously deleted variables). A 5% level of
significance is used. In any case, the constant term will not be dropped,
even if it turns out to be insignificantly different from zero, for it measures
the mean effect of possibly missing variables in our model22. The outcome
of the two aforementioned unit root tests is also shown. There, the values
between brackets indicate p-values.

The ’final’ model we end up with is, together with the corresponding OLS
estimates, shown in Table 3.1 below. Because the observations over the
period 1955-1961 are necessary to estimate the prior state vectors ßi0, γi0, δi0

18 See Amsler and Lee (1995) for (both an addition and) an overview.

19 As long as a correct filtering scheme has been chosen, the effects of structural breaks are
taken up by the coefficients themselves, and not by the residuals of either the state or the
transition equation.

20 Cf. Phillips and Perron (1988).

21 Tests based on a regular Wald statistic were carried out too, leading to identical results
in the end.

22 The approach that is chosen to model unemployment, namely based on monetary data,
is not the only one that has attracted much attention. The constant term intends, in a way,
to capture some of the effects of all other theories in this field (like the production function
view described in Hamermesh and Grant (1979) and Pasinetti’s (1981) view, stressing the
learning power of individuals in a community).
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and ηi0 (which thus remain the same until 1962), the OLS estimates are
confined to the period 1962-1993. In this way, the comparability of the
results is assured.

Table 3.1 OLS and Kalman Filter estimates of the ’final’ version of
model (3.2) (either t-values or p-values are shown between
brackets. Coefficients that do not appear in the Table have
been put equal to zero).

Estimation
method

OLS Kalman Filter

Coefficient Unit root
tests23

ß0 -.245 (-.61) 1.019 (2.95) OLS (#lags=2):

ß1 1.789 (11.5) .481 (1.84) Dickey-Fuller -2.500 (.33)

ß2 -1.159 (-5.69) -.685 (-2.77) Phillips-Perron -30.25 (.01)

γ1 .037 (3.76) .093 (3.76)

δ0 -.035 (-.56) -.251 (-1.12) Kalman Filter
(#lags=5):

η1 26.97 (2.31) 101.1 (14.6) Dickey-Fuller -3.856 (.01)

η2 23.25 (2.43) 40.92 (4.07) Phillips-Perron -34.78 (.00)

R²adj. .973 1.000 LR statistic24 -33.12 (1.00)

It may be illuminating to see how the importance of the variables has
changed over time. Therefore, Table 3.2 contains the evolving state vectors
of the ’final’ Kalman Filter model.

23 The optimal lag length used in the unit root tests is calculated by means of a variation on
the AIC (Akaike Information Criterion), described in Pantula et al. (1994).

24 As compared to the Kalman Filter estimates of the ’full’ model.
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Table 3.2 Evolving state vectors of the ’final’ model (continued on next
page).

Year ß0 ß1 ß2 δ0 γ1 η1 η2

1955 1.194 0.511 -0.724 -0.437 0.020 116.4 35.28

1956 1.194 0.511 -0.724 -0.437 0.020 116.4 35.28

1957 1.194 0.511 -0.724 -0.437 0.020 116.4 35.28

1958 1.194 0.511 -0.724 -0.437 0.020 116.4 35.28

1959 1.194 0.511 -0.724 -0.437 0.020 116.4 35.28

1960 1.194 0.511 -0.724 -0.437 0.020 116.4 35.28

1961 1.194 0.511 -0.724 -0.437 0.020 116.4 35.28

1962 1.123 0.475 -0.716 -0.376 0.047 115.1 38.39

1963 1.145 0.485 -0.718 -0.396 0.028 115.3 37.31

1964 1.010 0.418 -0.706 -0.292 0.032 113.7 43.42

1965 1.001 0.414 -0.704 -0.282 0.043 113.6 43.83

1966 0.880 0.355 -0.694 -0.180 0.054 112.0 49.20

1967 0.955 0.397 -0.699 -0.229 0.093 113.0 45.84

1968 0.932 0.381 -0.698 -0.214 0.079 112.8 46.90

1969 0.814 0.322 -0.674 -0.105 0.096 111.2 51.98

1970 0.742 0.289 -0.658 -0.048 -0.108 102.3 54.12

1971 0.731 0.276 -0.665 -0.095 -0.029 101.4 55.49

1972 1.073 0.441 -0.685 -0.346 0.081 104.2 38.95

1973 1.065 0.440 -0.685 -0.333 0.088 104.1 39.29

1974 1.015 0.423 -0.655 -0.263 0.132 103.2 41.40

1975 0.998 0.412 -0.656 -0.241 0.116 102.9 42.13

1976 0.991 0.415 -0.656 -0.228 0.134 102.7 42.39

1977 0.980 0.405 -0.662 -0.215 0.119 102.5 42.88

1978 0.982 0.406 -0.663 -0.216 0.116 102.5 42.82

1979 0.980 0.405 -0.663 -0.213 0.121 102.5 42.90

1980 0.981 0.404 -0.663 -0.216 0.111 102.5 42.87

1981 0.979 0.404 -0.663 -0.213 0.122 102.5 42.97

1982 0.996 0.435 -0.658 -0.234 0.161 102.6 42.24

1983 1.007 0.454 -0.654 -0.250 0.181 102.7 41.66

1984 1.006 0.452 -0.655 -0.250 0.178 102.7 41.69

1985 1.010 0.453 -0.674 -0.253 0.154 102.6 41.53

1986 1.036 0.494 -0.675 -0.248 0.072 101.6 40.05

1987 1.016 0.474 -0.688 -0.246 0.114 101.0 41.10

1988 1.017 0.475 -0.689 -0.246 0.116 101.0 41.02
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Table 3.2 Evolving state vectors of the ’final’ model (continued).

Year ß0 ß1 ß2 δ0 γ1 η1 η2

1989 1.018 0.476 -0.689 -0.248 0.113 101.1 40.98

1990 1.019 0.478 -0.688 -0.250 0.105 101.1 40.96

1991 1.019 0.480 -0.686 -0.251 0.097 101.1 40.93

1992 1.019 0.481 -0.685 -0.251 0.092 101.1 40.93

1993 1.019 0.481 -0.685 -0.252 0.093 101.1 40.92

Three coefficients are, at the end of the estimation period, smaller than
their initial values (namely, ß0, ß1 and η1), whereas the opposite happens for
the remaining ones (ß2, δ0, γ1 and η2). Around 1970, all coefficients (except ß2)
undergo rather large shocks as far as their magnitude is concerned. Most
prominent perhaps, are the negative values that occur for γ1 in 1970 and
1971. At the same time, ß0, ß1, δ0, η1 and η2 are either greatly increased or
decreased. For some time in the mid 1970s and the beginning of the 1980s,
ß0 falls below one once more. By the mid 1980s, all coefficients (except γ1)
have already moved towards their final values.

What all this evidence sums up to, is that there appears to be a lot of
volatility in the data (and thus, the size of the coefficients) of the ’final’
model, which may very well point to structural breaks in the structure of
Dutch unemployment during the estimation period25. OLS, being more
’static’ in nature by construction, fails to pick up these effects. Partly, the
evolution of the Dutch unemployment rate is self-enforcing: two autoregres-
sive terms turn up significantly in the ’final’ model. It is interesting that
these effects counteract with one another. Even stronger, the total effect is
negative (leaving aside time subscripts)26. However, from this result we
cannot conclude that in the long run, unemployment in the Netherlands
tends to decrease all by itself: the other variables play a major role in the
debate too. Besides, the significance of the constant term (being the fourth
important variable in the model based on the t-statistics) points to possibly
missing variables (for example, more macroeconomic oriented variables like
wages or variables on union power)27. On the contrary, the OLS estimates
would imply that no additional explanatory variables should be included
in our model (indicated by the insignificant constant term).

What is clear in any case, is that the most important variables (judging
from the t-ratios) are the lagged employment dispersion measures. Thus, the
sectoral shift hypothesis is endorsed. Moreover, given the evolution of the
ηi variables over time, the role played by the hypothesis is definitely
positive. As far as the size of its relationship with the unemployment rate
is concerned, we see that it is much stronger in our approach than when
applying OLS.

25 Admittedly, most of the breaks that have occurred are due to the previously mentioned
data revisions.

26 Which is appropriate if we were studying the long-term implications of our model.

27 See also note 22.
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One may recall that we have used a rather simplified version of the
Kalman Filter to test the sectoral shift hypothesis. This may give rise to the
question whether the filtering mechanism that was employed is ’good
enough’ for the current application28. Watson (1983) proposes a small
sample test to answer this question, based on the properties of the one-step
ahead prediction errors (to be called πt). They should be normally and
independently distributed with mean zero and a variance equal to one. If
the independence property is violated, the version of the Kalman Filter
chosen is not optimal.

Watson applies a Von Neumann Ratio test to analyze the property. Alter-
natively, we could resort to a Kolmogorov-Smirnov test on the standard
normality of the prediction errors. In doing so, we can use two samples: one
based on the entire estimation period (1955-1993) and one based on the
period after the prior state vectors have been estimated (1962-1993). This last
period is sometimes referred to as the period over which pure Kalman Filte-
ring is performed29. Although for this reason, the latter period is to be
preferred, we will present the outcome for both samples. Table 3.3 lists the
relevant statistics.

Table 3.3 Outcome of the Kolmogorov-Smirnov test on the standard
normality of the one-step ahead prediction errors of the
’final’ model (p-values between brackets).

Sample period Kolmogorov-Smirnov test statistic (p-
value)

1955-1993 .881 (.42)

1962-1993 .708 (.70)

The Table above tells us that the prediction errors πt indeed follow a
standard normal distribution (a 5% level of significance is applied). Yet,
hereby we have not tested the independence requirement. This is achieved
by calculating Pearson’s correlation coefficient between πt and πt-1 (which is
a valid approach for the normality of the data has been assessed)30 over the
two sample periods31. The results hereof are given in Table 3.4.

28 This question basically boils down to assessing whether the signal-to-noise ratio of this
specific Kalman Filter when setting St, Φt and Ψt equal to identity matrices, and all elements
of ct equal to zero can (and should) be improved or not. A description of the underlying
theory can be found in Anderson and Moore (1979), Ch. 5.5. However, we will use a slightly
different method than the authors describe here.

29 See Watson (1983), p. 79.

30 Spearman rank correlation coefficients were also calculated, leading to identical results.

31 We only test for first-order autoregressive behaviour of the prediction errors. Both Pearson
and Spearman correlation coefficients for lags two through five were calculated also, yielding
similar (insignificant) results.
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Table 3.4 Pearson correlation coefficient between the one-step ahead
prediction errors of the ’final’ model at period t and period
t-1 (p-values between brackets).

Sample period Pearson correlation coefficient (p-value)

1955-1993 -.086 (.61)

1962-1993 -.086 (.64)

Looking at Table 3.4, we see that the independence assumption of πt is
also satisfied. At a 5% level of significance we cannot reject the null hypo-
thesis of zero correlation between πt and πt-1 in either case. Nevertheless, an
option that we still have not examined is that the one-step ahead prediction
errors are biased. This may be the case because the basic assumptions
underlying the Kalman Filter are highly restrictive: not only do the usual
OLS assumptions have to be satisfied, but also should, among others, the
initial state vectors ßi0, γi0, δi0 and ηi0 be known in advance. Since we do not
know them, and OLS regressions are carried out to estimate their initial
values, a certain amount of bias could have slipped through in our final
results32. To test for this notion, we can use a standard t-test on the mean
of the one-step ahead prediction errors πt

33:

where = (1/N) Σiπi (i = 1,2,...,N).

Θ π
σ̂π

~ t
N 1

,

π

Again, we have a choice between the two aforementioned sample periods.
We will present the results achieved with both, as shown in Table 3.5.

Table 3.5 Testing the bias of the one-step ahead prediction errors πt (p-
values between brackets).

Sample period Θ (p-value)

1955-1993 .114 (.91)

1962-1993 .113 (.91)

Our conclusion is independent of the fact which sample period we
choose: in both cases, there seems to be no bias around the mean of the

32 For this reason, one may claim that it would have been better to use the Kalman Smoother
instead of the Kalman Filter right from the start. Then, we would estimate our model by
means of the Kalman Filter for period 1 through N, and given these estimates, from period
N to 1 and then again the other way around until the difference in estimates reached at stage
i do not differ substantially from those at stage i+1 (based on some criterion value). The
estimates thus obtained are the steady state values of the model under consideration.
However, the following test assesses whether these steady state values are sufficiently
approximated by applying the Kalman Filter only once. If they turn out not to be, we will
have to turn to using the Kalman Smoother indeed.

33 Following Watson (1983), p. 78.
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prediction errors (using a 5% level of significance). Thus, although we opted
for a rather simple Kalman Filter to analyze the sectoral shift hypothesis in
the Netherlands, the previously obtained results are statistically valid. In
short, sectoral shifts do seem to matter for the evolution of the Dutch
unemployment rate. This result implies that policy makers should not limit
themselves to aggregate models that do not explicitly incorporate a
multisectoral dimension of (production and) employment when studying its
behaviour. The significant constant term in our model also indicates that
non-monetary and non-fiscal policies can play a substantial role in
stabilizing unemployment in the Netherlands.

4. Summary and Conclusions
Regression results can be heavily influenced by the presence of structural

breaks. Although there are many methods available to deal with them, we
adopt a Kalman Filter approach here. Since we want to test the sectoral shift
hypothesis in the Netherlands (stating that variations in the speed of labour
reallocation between sectors results in fluctuations of the natural rate of
unemployment), and the Dutch data have undergone several revisions, this
approach seems to be more suitable than, say, running standard OLS
regressions. Although we use a rather simplified version of the Kalman
Filter to test the hypothesis, it turns out to be a statistically valid
approach: the prediction errors are normally distributed and show no sign
of bias. The sectoral shift hypothesis is tested within a framework of mostly
monetary data, following the work of Barro (1977), Lilien (1982) and Mills
(1996). What we find, is that the employment dispersion measures are the
most important variables in explaining the Dutch unemployment behaviour
during the postwar period. Thus, the sectoral shift hypothesis is endorsed.
But, given our highly significant constant term, it may very well be that the
inclusion of other variables affecting unemployment (for example, more
macroeconomic oriented variables like wages or variables on union power),
would alter our results somewhat. However, this must be left for further
research. It is clear in any case that the nature of unemployment should be
studied within a multisectoral framework, and that there obviously is room
for more than just monetary and fiscal policies to stabilize it.

12



References

Amable, B. and Juillard, M., ’The Historical Process of Convergence’, TSER
Working Paper, January 1997.

Amsler, C. and Lee, J., ’An LM Test for a Unit Root in the Presence of a
Structural Change’, Econometric Theory 11 (1995), pp. 359-368.

Anderson, B.D.O. and Moore, J.B., Optimal Filtering, Prentice Hall Incorpora-
ted, Englewood Cliffs, 1979.

Barro, R.J., ’Unanticipated Money Growth and Unemployment in the United
States’, American Economic Review 62 (1977), pp. 101-115.

Broemeling, L.D. and Tsurumi, H., Econometrics and Structural Change,
Marcel Dekker Incorporated, New York, 1987.

Burmeister, E. and Wall, K.D., ’Kalman Filtering Estimation of Unobserved
Rational Expectations with an Application to the German Hyperinflation’,
Journal of Econometrics 20 (1982), pp. 255-284.

Charemza, W.W. and Deadman, D.F., New Directions in Economic Practice,
Edward Elgar Publishing Limited, Aldershot, 1992.

Conrad, W. and Corrado, C., ’Application of the Kalman Filter to Revisions
in Monthly Retail Sales Estimates’, Journal of Economic Dynamics and Control
1 (1979), pp. 177-198.

Engle, R.F., ’Estimating Structural Models of Seasonality’. In: Zellner, A.
(ed.), Seasonal Analysis of Economic Time Series, Bureau of the Census,
Washington, 1978.

Garcia-Ferrer, A. et al., ’Macroeconomic Forecasting Using Pooled Interna-
tional Data’, Journal of Business & Economic Statistics 5 (1987), pp. 53-67.

Fortin, M. and Araar, A., ’Sectoral Shifts, Stock Market Dispersion and
Unemployment in Canada’, Applied Economics 29 (1997), pp. 829-839.

Hall, S., Robertson, D. and Wickens, M., ’Measuring Convergence of the EC
Economies’, London Business School Discussion Paper DP 1-92, 1992.

Hamermesh, D.S., and Grant, J.H., ’Econometric Studies of Labour-Labour
Substitution and Their Implications for Policy’, Journal of Human Resources
14 (1979), pp. 518-542.

Harvey, A.C., Time Series Models, Phillip Allan, Oxford, 1981.

Hendry, D., ’Econometric Methodology: a Personal Perspective’, 1985 (Paper
Presented at the Econometric Society’s Fifth World Congress, MIT).

13



Howrey, E.P., ’The Use of Preliminary Data in Econometric Forecasting’,
Review of Economics and Statistics 60 (1978), pp. 306-321.

Kalman, R.E., ’A New Approach to Linear Filtering and Prediction
Problems’, Journal of Basic Engineering 82 (1960), pp. 35-45.

Kraemer, W. (ed.), The Econometrics of Structural Change, Springer-Verlag,
New York, 1989.

International Financial Statistics Yearbook 1990, Publication of the IMF, Interna-
tional Monetary Fund Publication Services, Washington, 1990.

International Financial Statistics Yearbook 1995, Publication of the IMF, Interna-
tional Monetary Fund Publication Services, Washington, 1995.

LangeReeksen Boek 1950-1996, Publication of the CPB, Afdeling Bedrijfstak-
kencoördinatie, The Hague, 1995.

Lilien, D.M., ’Sectoral Shifts and Cyclical Unemployment’, Journal of Political
Economy 90 (1982), pp. 777-793.

Maddison, A. and van der Wee, H., Economic Growth and Structural Change:
Comparative Approaches over the Long Run, Bocconi University, Milan, 1994.

Mills, T.C., Pelloni, G. and Zervoyianni, A., ’Cyclical Unemployment and
Sectoral Shifts: Further Tests of the Lilien Hypothesis for the UK’, Economics
Letters 52 (1996), pp. 55-60.

Pantula, S.G., Gonzalez-Farias, G. and Fuller, W.A., ’A Comparison of Unit
Root Test Criteria’, Journal of Business & Economic Statistics 12 (1994), pp. 449-
459.

Pasinetti, L.L., Structural Change and Economic Growth, Cambridge University
Press, Cambridge, 1981.

Pelloni, G., ’Sectoral Shifts and Unemployment Fluctuations in the UK’,
IDSE, Dynamis Quaderno 9/92, 1992.

Phillips, P.C.B. and Perron, P., ’Testing for a Unit Root in Time Series
Regression’, Biometrika 75 (1988), pp. 335-346.

Rosenberg, B., ’An Atomistic Approach to Linear Regression’, Berkeley
Institute of Business and Economic Research Working Paper IP-137, 1968.

Vilares, M.J., Structural Change in Macroeconomic Models: Theory and
Estimation, Nijhoff, Dordrecht, 1986.

Watson, P.K., ’Kalman Filtering as an Alternative to Ordinary Least Squares
- Some Theoretical Considerations and Empirical Results’, Empirical Econo-
mics 8 (1983), pp. 71-85.

14



Appendix A: Data Description

The Dutch unemployment figures are taken from various sources of the
Central Bureau of Statistics (CBS) and Eurostat’s SOCPROT database. They
are all expressed in Full-Time Equivalents (FTE). All Dutch employment
data, which come from the Central Planning Bureau’s LangeReeksen Boek
1950-1996, have a similar base. Data on interest rates and the money supply
are obtained from the IMF’s International Financial Statistics Yearbook (from
1990 and 1995 publications). The GDP deflator is also contained herein, and
is combined with comparable data from the OECD’s STAN database. As a
proxy of the short-term interest rate, the money market rate is used (which
influences short-term borrowings between financial institutions)1.

In order to calculate the employment dispersion measure , weσ̂
t

distinguished 20 sectors. These sectors are shown in Table A.1 below.

1 As suggested by the IMF itself, cf. the International Financial Statistics Yearbook 1995 (1995),
pp. xv-xvi.
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Table A.1 Sectors used in the calculation of .σ̂
t

Number Description

1 Agricultural, forestry and fishery products

2 Food, beverage and tobacco

3 Textiles and clothing, leather and footwear

4 Wood, cork and furniture

5 Paper and printing

6 Chemical and rubber products, plastics

7 Metal products, machinery, office and data processing
machines, electrical goods, precision and optical instru-
ments

8 Petroleum and natural gas

9 Ferrous and non-ferrous ores and metals, minerals and
mineral products (excluding petroleum and natural gas)

10 Production and distribution of electricity, gas, steam and
(hot) water

11 Building and construction

12 Letting of real estate

13 Recovery and repair services, wholesale and retail trade
services

14 Maritime and air transport services

15 Inland and auxiliary transport services

16 Communication services

17 Services of credit and insurance companies

18 Lodging and catering, other market services

19 Health care, other non-market services (excluding gov-
ernment services)

20 Government services

The time series , that resulted using employment information on theσ̂
t

sectors above, subsequently entered the construction of .σ̂p
t
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