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Abstract

In this paper, the relationship between technological change and the labour market is analysed
using a growth model. Economic growth is generated by private investment in human capital,
which is the heart of technological change. The model developed in this paper resembles the
model of Lucas (1988), but differs in some important definitions. These definitions make it possible
to combine a steady state equilibrium (constant and positive growth rates) with production
functions for both the research and the educational sector which are not linear. This latter feature
is an improvement on the new growth theory. However, the model generates a system of dynamic
equations that can only be used for stability analysis when additional assumptions are made with
respect to the endogenous variables.
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Introduction

1. Introduction

This paper is part of a PhD research project on technological change and labour
market mismatches. Here, | will try to investigate the impact of technological
change on the labour market by means of growth theory. A growth model will be
presented, in which economic progress is endogenized by means of a human
capital production function. Although this model only marginally differs from the
model of Lucas (1988), it exhibits a new treatment of human capital and
knowledge within a growth model.

In section 2, | will start by examining the Lucas model of economic growth. After
a desciption of the full model, | will pay only little attention to the steady state
solutions to the model. The section mereley serves as both an introduction to
Lucas-like modelling and as a reminder of the Lucas model itself.

In section 3, | will elaborate on the concepts of schooling, human capital and
knowledge and the way they are incorporated in models of economic growth. For
this purpose, | will elaborate on the theory of human capital, as originated by
Schultz (1960) and Becker (1964), and the role of human capital in growth theory.

In section 4, | will present a model with endogenous economic growth, in which
private investment in human capital is the growth generating motor of the
economy (like in the Lucas model). Although my model and the Lucas model are
structurally very similar, the former combines constant growth rates and marginal
decreasing returns to human capital investments in the steady state, whereas the
latter combines constant growth rates with constant returns to investments in
human capital in the steady state.

In section 5, some conclusions will be drawn with respect to the process of
transition and the characteristics of a steady state.

Section 6 contains a summary and conclusions.
2. The Model of Lucas (1988)

In his paper, Lucas (1988) focusses on the role of private investment in human
capital in the process of technological change and economic growth.



The Model of Lucas (1988)

He stresses the fact that the investment decision refers to the individual time
allocation problem, because investing in human capital (schooling, on the job
training) takes time. Time can be used for production purposes, raising
consumption possibilities, and as a consequence, investments in human capital are
not costless in the sense of opportunity costs (apart from the fact that in most
countries, people must pay for acquiring education). Lucas’ definition of human
capital is simple:

By an individual’s 'human capital’ |1 will mean [..] simply his general skill level, so that a worker
with human capital h(t) is the productive equivalent of two workers with “h(t) each, or a half-time
worker with 2h(t). (Lucas (1988), p.17)

Furthermore, Lucas distinguishes between non-leisure time devoted to production
(of consumer goods), u, and non-leisure time devoted to the accumulation of

individual human capital, 1-u. The growth of human capital in period t, h(t), is
related to the level of human capital in the following way:

) h(t) = 3[1-u(t)]h(t)’

where 0 is a productivity parameter. In his model, Lucas assumes ¢=1, and (1)
becomes linear in all variables. In the following section, this equation will be
discussed at length.

The rest of the Lucas model ressembles a standard neoclassical model of growth.
Infinitely living (representative) families maximize utility U, which depends
positively on private consumption levels. Lucas uses the constant intertemporal
elasticity of substitution (CIES) utility function (see Barro and Sala-i-Martin (1995),
p.64):

¥ u) - TNo(cl“—l)

where N is the size of the (working) population, c is the level of (per capita)
consumption and o is the elasticity of substitution (see Barro and Sala-i-Martin
(1995), p.64).



The Model of Lucas (1988)

Consumer goods will be produced according to the following Cobb-Douglas
production function:

) y = AKP(UNh): P

where A is an exogenous technology parameter and K is the level of (physical)
capital inputs. The latter accumulate according to the following rule:

(4) K=vy-c

In conclusion, infinitely living families maximize (2), subject to a budget constraint
given in (4) and a human capital production function given in (1). The current
value Hamiltonian of this problem becomes:

H = l(cl"’—l) + el[AKB(uNh)l’BhV—Nc]
(5) 1-0

- 8,[8h(L-u)]

The optimal control theory can be applied to solve for the steady state (constant)

growth rate of human capital, h/h=h=v:

(6) V=0'3-p-A)

where p is a discount rate and A=N/N=N is the growth rate of the population N.
It is obvious from (6) that the growth rate of human capital and therefore the
growth rate of production can be positive even when the size of the population is
constant (A=0), which was not the case in traditional neoclassical theories of
growth.?

So far, | have described the structure of the Lucas model and presented its main
steady state solution, which is the growth rate of human capital. In the following
section, | will make some comments with respect to the role of human capital and
knowledge in this and other endogenous growth models.

1. Lucas incorporates an external effect from the average level of human capital in the production
function. | have omitted this externality, because it is not crucial for a comparison between the Lucas
model and mine.

2. See Barro and Sala-i-Martin (1995), Chapter 2.



The Concept of Knowledge

3. The Concept of Knowledge

Equation (1) is crucial to the model of Lucas. The assumption that ¢=1 forces the
steady state growth rate of human capital to be constant, as is obvious from this
equation. When ¢<1, the human capital growth rate converges to zero over time
(and so does economic growth) and when ¢>1, the system explodes. However,
Schultz (1960) and Becker (1964) have originated a human capital theory, in which
the education decision of an individual is defined analogously to a standard
investment decision. Investing in education and human capital by individuals
continues over time until the expected returns from additional education
(discounted higher wages) outweights the expected cost of additional education
(discounted schooling outlays).

Indeed, the educational decision is a decision about time allocation, as was
recognized by Lucas (p.17), but the time share devoted to the accumulation of
human capital must decline over a life time as a result of the abovementioned
investment decision by individuals.® This implication is crucial to the human
capital theory, but is not incorporated in the model of Lucas. It was recognized by
Lucas (p.19) that diminishing returns from investments in human capital are not
described by (1) with ¢=1, but with ¢<1. However, as discussed above, ¢<1 will not
result in constant steady state rates of growth in his model.

In addition to this remark, meaning of equation (1) has never been discussed
clearly in the literature. When h is called "human capital”, the statement "human
capital is needed in order to produce new human capital" seems quite plausible.
For example, someone first has to learn a language before he or she can read the
literature written in that language. However, when h is labelled "labour efficiency",
or "knowledge", the statement "labour efficiency is needed in order to produce
new labour efficiency” seems quite strange in the presence of productivity
parameter o in (1). Furthermore, the statement "all knowledge is needed in order
to produce new knowledge" highly exagerates the capacities of many scientists or
inventors. In other words, the variables and their representation in equation (1)
need some reconsideration.

3. 1 like to stress the importance of this point. In some cases, it can be observed that learning and
schooling activities take a quite constant share of time in any period of a person’s life. However, it can
hardly be defended that knowledge acquired in the last periods of the working life of such a person
will be paid back in terms of 'returns on investment’.

4



The Concept of Knowledge

Let me start by defining human capital, labour efficiency and knowledge once
again and use them for another representation of the problem. Human capital is
treated as the individual stock of acquired education. During schooling time,
individuals acquire part of the total stock of knowledge. Individual labour
efficiency is treated analogously with human capital and it can achieve a
maximum level of efficiency when all knowledge has been acquired (Muysken and
Oude Wansink (1994)). This means that the maximum level of efficiency is
determined by the stock of knowledge, which will not be constant over time. The
stock of knowledge is defined as the total amount of (productive) information or
techniques that is known at a certain moment in time. This stock refers to the set
of knowledge of all individuals and consequently, it is hardly possible to any
individual to possess the entire stock of knowledge. Only some well educated
scientists may come close to it.

Let me give an illustration of how these concepts are used in relation to each
other. In Oude Wansink (1995), | pointed at the obsolescence of skills, whereas in
Muysken and Oude Wansink (1994), the concept of minimum and maximum
efficiency levels was described. The integration of these concepts is illustrated in
Figure 1.

max
€

Figure 1
The Development of Efficiency Levels



The Concept of Knowledge

Individual labour efficiency can only increase when investments in education are
made.* Furthermore, there is a minimum required and a maximum obtainable
level of efficiency, determined by the situation in the labour market and the rate
of technological change, respectively. An increase in the maximum efficiency level
€™ leads to a situation in which new entrants in the labour market, fresh from
their schools, have relatively higher efficiency levels than those holding the jobs.
This is the result of technological change, which directly increases both the
maximum obtainable level of efficiency and the efficiency of the education sector.
The maximum level €™ is referred to as the stock of knowledge, whereas the
actual individual level of efficiency is referred to as labour efficiency or the amount
of human capital acquired by an individual.

In Figure 1, individual A invested in human capital (schooling) between period t,

and t,, resulting in an increased efficiency level €. Individual B did not invest in

human capital (no schooling) in the same period and his level of efficiency €°

remained constant. There are two reasons for the skills of individual B to become

obsolete:

- efficiency level £* becomes the minimum level of efficiency demanded by firms
in the labour market and individual B becomes unemployed;

- the remuneration for the supply of efficiency level B (the wage level) decreases
below the minimum subsistence level and individual B is forced to look for
additional income or another job.

When individuals invest in education and knowledge, their efficiency will increase
but marginally decrease with the schooling effort made. Gradually, their efficiency
level will approach the maximum attainable efficiency level €™ This is illustrated
in Figure 2. The development of the efficiency level €' for individual i is depicted
as a function of the number of schooling years s. The decision to raise the level of
efficiency from €* up to €° depends on wages, the cost of schooling and a discount
rate. The human capital investment decision rule can be defined as:

B T

(7 lcs(t) e Pt < lw(t) (e -€M)e Pidt

where c, is the cost of schooling, w is the wage rate per efficiency unit, T is the
period of retirement and p is a discount rate.

4. On-the-job learning is not present in my analysis, but can be incorporated very easily.

6



The Concept of Knowledge

0 A B

Figure 2
Efficiency Level and Schooling

In (7),the discounted cost of additional schooling on the left side must at least
outweight the discounted extra wage after schooling for an individual to invest in
the additional education. It is easy to see that the slope of a line tangent to point b

on the €' curve in Figure 2 is equal to ¢./W, where the tilde on a variable stands

for the discounted value of that variable. The higher the discounted schooling cost,
the steeper the tangent line to the €' curve, the shorter the period of schooling. The
higher the discounted wage per efficiency unit, the flatter the tangent line to the ¢
curve, the longer the period of schooling.

Now that | have described the concave relation between efficiency/human capital
and schooling effort and the education investment decision corresponding to it,
the development of the maximum obtainable level of efficiency €™, or better: the
increase in the stock of knowledge, must be described. As an example of another
definition of the growth of the stock of knowledge, | start with the equation of
motion used in the Romer (1990) model:’

(8 A = 3[1-u(®)]A

where A is an index for the stock of knowledge.

5. The variables have the same meaning as before. The human capital variable H, in the Romer model
is defined as the 1-u(t) expression from the Lucas model.

7



The Concept of Knowledge

It is the same equation used by Lucas (1988), but the state variable is called
"knowledge" or "blueprints" by Romer instead of "human capital” by Lucas. Romer
calls the 1-u(t) term human capital, but is not very clear about the exact meaning
of this human capital.® However, his idea that human capital is used as a
production factor in the research sector is very appealing, because it explains why
knowledge can be accumulated independently from the creation of human capital
and the acquisition of knowledge by individuals. When human capital is assumed
to exhibit increasing but marginally decreasing returns in the production of
knowledge, this would lead to the following Cobb-Douglas production function of
knowledge:

©) A = (uh)?

where u is the non-leisure time share devoted to research and h is a human capital
index (B is a parameter with 0<p<1). The same concave relation can be defined for
the production of education (see next section). With these concave relations, the
limited amounts of time devoted to research and education, as computed from the
human capital decision rule in (7), can be confronted with the optimum constant
fraction of time devoted to research and education as computed from a Lucas like
model of economic growth.

In the model outlined in the next section, | will incorporate the abovementioned
concave production functions in a model of economic growth. As before, | will
assume the amount of human capital and the level of labour efficiency to be
equivalent, for which | will use variable €. The technology variable A, which is
exogenous in the model of Lucas, will serve as the stock of knowledge in my
model.

6. For instance, Romer assumes that "human capital H is a distinct measure of the cumulative effect
of activities such as formal education and on-the-job training" and that it is the "rival component of
knowledge" (p. S79). Furthermore, "any person can devote human capital to either the final-output
sector or the research sector. Implicitly this formulation neglects the fact that L [labour services, MOW]
and H are supplied jointly. To take the equations used here literally, one must imagine that there are
some skilled persons who specialize in human capital accumulation and supply no labor" (p. S85).
However, labour services L "are measured by counts of people" (p. S79), which means that human
capital H must incorporate a part that is also "measured by counts of people”. It means that the growth
rate in his model would be dependent on some measure of the number of scientists, which is very
unlikely.



A Model with Endogenous Growth

4. A Model with Endogenous Growth

As mentioned before, | have developed a model with endogenous growth which
ressembles the model of Lucas (1988) in many ways. Therefore, equations (2) and
(4) will also be used in my model. The equation of motion (1) and the production
function in (3) will be different, whereas another equation of motion will be added
to the system.

The production function will be slightly different from the one in (3), because the
non-leisure time devoted to production by workers must be corrected for the time
devoted to research (u) and to schooling (v). The production function then
becomes:

(10) y = AK?[(1-u-v)e]* ®-¢c

with O<a<l1. As described in the previous section, the acquisition (and therefore
the growth) of human capital is concavely related to its own level, but directly
influenced by the stock of knowledge A. This can be represented by the following
equation:

(11) £ = (ev) PA

with 0<B<1. Finally, equation (9) can be rewritten in terms of efficiency:
(12) A = (eu)®

The (3 parameter in (11) and (12) is the same parameter, indicating that there exists
a trade-off between the productivity of scientists/teachers in the research and the
education sector. This is caused by competition in the labour market.

The following current value Hamiltonian can be constructed given the
intertemporal optimization problem of maximizing (2), subject to (4), (10), (11) and
(12):

H=_1 @1 - 8 AKe[I-u-v)e] * ¢ -

(13) l1-0
6,(eu)® + B,(ev)' PA

with state variables A, K and &, costate variables 8,, 8, and 0, and control variables
c, uandv.



A Model with Endogenous Growth

The first order conditions give rise to the following system of equations:

(14) c°-8,=0

(15) -0, (1-a)AK e “(1-u-v) ® + 6,BefuP ! = 0
(16) -0, (1-a)AK e “(1-u-v) * + 6,(1-P)e' PuPA = 0
17) 6, = pB, - B,aAK* *e “(1-u-v)*°

(18) 6, = pb, - B K e “(1-u-v)' ® - 0 (ev)" P

6, = pb, - 6, (1-a)AK e “(1-u-v)' * -
(19)
6,8 'uf - 6,(1-B)e PV PA

Together with (4), (11) and (12) 9 equations are available in order to get a steady
state solution for 9 variables mentioned above. By definition, the growth rates of c,
K, A and ¢ are constant in a steady state and those of v and u are assumed to be
equal to zero (time shares devoted to any activity are constant). Following the
analysis of Lucas, it is easy to find that:

(20) o d-a-p

Furthermore, dividing both sides of (12) by A and differentiating yields:
(21) A =t

Expressing the first order conditions in growth rates yields:

(22) 6. = -ot

(23) 6,+A~aK+(1-a)¢ = 6,+p¢



A Model with Endogenous Growth

(24) 6,+A+aK+(1-a)¢ = B,+(1-P)e~A
(25) 6, = p-aAK* *e" ¥ (1-u-v)t®
0 O
(26) 6, = p-Al(eu)P %B lruv B Ve
-a u 1-B uf
(27) 6, = p-(1-P)(ev) PA

Growth rates of the equations of motion (4), (11) and (12) are given by:

(28) K = AKaflslfa(l_u_v)l—a - cKt
(29) A = (eu)fA
(30) € = ePviPA

From (26), (29) and (21) it is clear that:

(31) % B -u-v B VE
6, = p-BE _
: = PP a—a u 1-B UE

From (27) and (30) it can be found that:

(32) 6, = p-(1-p)v ‘¢

Substitute (20), (22), (29) and (32) in (23), dividing by € and rearranging yields
_ 1-a)pv
(1-a)(1-B)+[B-o(L-a+P)v

This equation can be used to express the growth rates of ¢, K and A, as defined in
(20) and (21) in terms of u and v. The last step is to find the solutions for these
latter mentioned variables. Equations (20), (21), (22) and (31) can be used in order

(33) 3

to get the following expression for € from (23):

11



A Model with Endogenous Growth

P

g -
(34) @a—o)(l—a+[3)+l_u+BE B 1l-u-v B
[ 1-a E;‘l—a u 1-B

0
V([
Ui

Equation (34) must equal (33) and from this equality, | can get the following
expression for u:

(35) U - -Blv(1-B)-v*(2-B-a)
L-0)(1-B)B-1) +[(1-a)(1-2p)~B*B-a)]v
Next, substituting (22) and (28) in (25) yields:

(36) _gt = p-a(R+"C
ot = p-a( K)

Using (20) and (33), I can get the following expression from (36) that contains v, ¢
and K as endogenous variables:

o, coneow B
%1—0()(1—[3%[[5—0(1—0(+I3)}V% K

The growth rates of consumption ¢ and capital inputs K are the same by (20),
which means that the ratio ¢/K is constant over time. Therefore, | introduce the
steady state constant x=c/K. From (37), a definition of v can then be obtained:

38) - (P-ax)(1-a)(1-P)
p@-P)(L-a) - ax[B-o(l-a+p)

Substitution of (38) in (35) gives a solution for u:

(39) U - -B*(ax-p)lax(a?+a(B+o-3)-Bo-0+2)-2p(a-1)}
lax(ao+B(1-0)-0)-p(a-B)(a-1)[ax(@+o-1)-p(a+B-1)(a-B-1)

I will now turn to the analysis of the steady state solutions in order to find out
under which conditions the solution is feasible or not. The solution for v in (38)
must be positive.

12



A Model with Endogenous Growth

Because (1-a) and (1-p) are positive by definition, 3 criteria determine the sign of v
in (38):

-p<>a?

-a<>B?

- 0 <> B/(1-a+B) ?

In Table 1, | put these criteria on the axes and describe the conclusion with respect
to the sign of v. Furthermore, v must also be smaller than 1. Assuming o to be
positive, this restriction leads to the following condition:

(40) p< ax

Given the predefined contraint of 0<a<1, all possibilities presented in Table 1 are
feasible when taking into account the condition in (40).

The Sign of v

[1] = [pa-P)(@-a)| and [2] - ax[B-o(1-a+p)
o> ax o < ax
a>p V>0 V<0

o <B/(L-a+B)
a>p v>0if v>0if
o> /e [11> 2 1< 2]
a<p v>0if v>0if
o< Ba [1] < [2 1> 2]
a<p V<0 V>0

o> B/(L-a+B)

Table 1

In conclusion, | have 6 possible situations reported in Table 1 in which v can take
a value between 0 and 1.

The result for u in (39) is more complex to handle, but from (35), assuming v to be
positive, 3 criteria can be developped in order to test the sign of u.

13



A Model with Endogenous Growth

Again, a table can be constructed with 8 possible situations. The criteria give rise
to 7 feasible solutions, for which the conditions are reported in Table 2. As before,
| could find some additional criteria from the restriction that u<1, but it only
possible to calculate some restriction on the value of v from (35). An interpretation
of this restrictions can hardly be given and in some respect, such an explanation
ressembles the conclusions that can be drawn from Table 2. However, this
restriction does not change any of the criteria presented in Table 2, which means
that 7 possible different combinations of a-, - and v-value ranges can be
associated with a positive value of u.

The Sign of u
[1] = [@-ay@-2p), [2] = |B@®-0),
3] - |-y @-P)B-1)| and [4] - [[(1-a)(L-2p) +B(B- )]

ve 1B v> L-B

2-a-fB 2-a-f
B>1/2 u>0 u<o

a>fp

B> 1/2 u>0if u>0if

- [1] > [2] or [1] < [2] and
a<b [3] > (4 [8] < [4]
B < 1/2 u>0if u>0if

. [1] < [2] or [1] > [2] and
@>P [3] > 4] [8] < [4]
B<1/2 u>0if u>o0if
o <p [3] > [4] [3] < [4]

Table 2

Finally, the value of & should be positive in a steady state in order to have ¢, K

and A positive as well (from (20) and (21), respectively).

From (33) it can be found that £€ > 0 imposes the following restriction on o:
The right hand side of (41) is always positive, which means that for any value of o
and a positive v, the model predicts a positive growth rate of efficiency €.

14



A Model with Endogenous Growth

(41) 0<g< L-NUP-Pv
Q-a+pB)v

Note that the range defined in (41) does not exclude any of the possible outcomes
for v presented in Table 1.

In the next section, | will focus on the stability characteristic of a steady state. It
will be interesting to see how the results relate to the theoretical issues raised in
section 3. Besides, the dynamic behaviour of the model will be analysed.

5. Stability Analysis and Transitional Dynamics

The system of first order conditions, given in (4), (11)-(12) and (14)-(19) contains 3
control variables, 3 state variables and 3 costate variables. The costate variables
can be eliminated by means of substitution, but a very complex system of
equations still remains to be solved. Therefore, conclusions with respect to the
stability of the system and its transitional dynamics can only be drawn when
additional assumptions are made. In this section, two different scenarios will be of
the model outlined in the former section will be described.

The first scenario describes the individual adjustment of time when growth rates
of variables and shadow prices are constant in the process of transition towards a

steady state equilibrium. In other words, when éz and € are assumed to be
constant in the transition process, (31) can be restated as:

(42) vV =0-u
where
1-B
(43) =_- 7
% 2-a-f

15



Stability Analysis and Transitional Dynamics
and

(44) o - (L-0)(1-B)(p-6,)+(L-P)BE
2-a-ppe

The slope of the line defined in (42) depends on the level of p in relation to 62. I

assume a trade-off between time spent on research and time spent on education,
which means that (42) describes a downward sloping curve in the (u,v) space.’

Next, the additional assumption of 93 to be constant over time, implies that (32)

can be expressed as:

(45) V= Q
where
1-B)¢
(46) o - LD
p-6,

which is constant. The sign of the right hand side of (46) depends on the level of p

in relation to 93, but only positive values for v are meaningful.

In Figure 3, | have depicted the situation described by (42) and (45). The available
amount of time has been normalized to unity. The downward sloping curve
described by (42) corresponds to the line AB in Figure 3, indicating that when u=0,
Vv is positive in point A (=@,). The constant value for v described by (45)
corresponds to the horizontal line at v=v'. It is clear from the figure that the steady
state equilibrium (u’,v) is known when the initial (constant) value for v is known
by (45). This is a once-and-for-ever adjustment within one period (for instance,
from initial point u=C to u=u’), which means that there are no transitional
dynamics. Note that the constant v defined by (45) is restricted to be less than
unity, because working time (1-u-v) must initially be positive. Finally, in Figure 3,
the white area bordered by A and B contain possible steady state values for u and
v, whereas the shaded area represents the remaining possible level of the steady
state working time (1-u-v).

7. This assumption relates to the time allocation problem as discussed upon in section 3.

16



Stability Analysis and Transitional Dynamics

0 u’: B C 1
Figure 3
Equilibrium in Time Allocation

The second scenario refers to the individual adjustment of consumption and
saving plans, given the constancy of growth rates of technological change and
shadow prices and given fixed time shares devoted to the different activities.
Substituting (25) in (28) and rearranging yields:

0a

c
K

(47)

Ogoo

The first term of the right hand side of (47) is assumed to be constant, which
means that differentiating (47) gives the following expression:

c

(48) K /ot = % [6-K]

Next, substituting (22) in (23) and rearranging yields:

(49) 6= YR~
(0]

Hl-a-p)e-A-8,
= o

I

17



Stability Analysis and Transitional Dynamics

The second term of the right hand side of (49) is assumed to be constant, which
means that differentiating (49) gives the following expression:

(50) ae/sat = & (aR/a1)
(0]

Both (48) and (50) can be used to create a phase diagram, in which the stability of
a steady state solution can be analysed.® Setting dK/dt = 0 in (48) defines the

linear relation ¢ = K. This relation could have been expected to show up in the
stability analysis since the growth rates of capital K and consumption c are the

same in a steady state by (20). Setting 9¢/9t = 0 in (50) defines K to be constant.
In Figure 4, |1 have depicted this situation in a phase diagram, together with the
dynamic paths of both variables as given by (48) and (50). Note, that the direction

of ¢/0t in (50) is determined by the direction of dK/dt in (48).

e éZOL A

L.

-
-

>

Figure 4
Dynamics of Consumption and Capital

The intersection of both lines in Figure 4 represent the steady state equilibrium,
which is a saddle point.

8. See Chiang (1984) and Chiang (1992) for the use of phase diagrams and other tools of dynamic
analysis.
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This can be verified by defining the Jacobian matrix of the dynamic equations (48)
and (50):

x| o

]
x| o
o

(51)

[
1]
o o |
al a
o

The determinant of the Jacobian matrix is equal to -ac/ocK which is negative.

This is an indication that the steady state equilibrium is a saddle point. Therefore,
as depicted in the Figure by the dashed line, there exists a unique path towards
the steady state equilibrium.

In conclusion, the assumption of constant growth rates of technology variables and
shadow prices, as well as fixed time shares u and v leads to a dynamic adjustment
of consumption and saving patterns as depicted in Figure 4. The resulting steady
state equilibrium is a saddle point.

This completes the discussion of the stability and the transitional dynamics of the
model. The last section will be used to summarize the main findings of this paper.

6. Summary and Conclusions

In the model of Lucas (1988), private investment in human capital is the growth
generating motor of the economy. The investment decision in his model is a time
allocation problem with respect to schooling and working time. The creation of
human capital, and therefore economic progress,is endogenized in his model. The
Lucas model is characterized by a steady state equilibrium in which growth rates
are constant and positive, even when population growth is absent, and non-leisure
time shares devoted to schooling and working are constant too.

The production function of human capital in the Lucas model is linear in the stock
of acquired human capital. This means that the marginal productivity of the
human capital creating sector is constant with respect to both time and the
amount of acquired human capital.
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This is not acceptable when confronted with the human capital theory as
originated by Schultz (1960) and Becker (1964), because constant marginal returns
to education limits the amount of education to be acquired only by time and not
by the inputs of the educational production process. Therefore, in a model where
individuals (or families) live infinitly, this linearity cannot give a sound
explanation for the human capital investment decision by individuals.

In the model presented in this paper, a distinction has been made between time
devoted to work, schooling and research activities. In all sector, producers are
confronted with a production function that exhibits increasing but marginally
decreasing returns to scale. One exception is formed by the use of the available
stock of knowledge in the education sector. The model can be solved when it
comes to the identification of a steady state equilibrium in which all growth rates
of variables and time shares are constant, but an autonomous differential system
with 6 endogenous variables remains to be solved in order to reach at conclusions
with respect to the stability and the transitional dynamics of the model.

Two different scenarios have been investigated in this paper. In the first scenario,
individuals are faced with the adjustment of time shares devoted to work,
schooling and research activities. The growth rates of technological and
behavioural variables, as well as those of shadow prices are assumed to be
constant during the period of transition. A simple linear system of equations
remains to be solved, in which transitional dynamics are absent. The resulting
steady state equilibrium is stable.

The second scenario describes how individuals are faced with the adjustment of
consumption and saving plans. In this scenario, growth rates of technological
variables and shadow prices are assumed to be constant, as well as the time
shares. A dynamic system of equations remains to be solved, which can be done
gualitatively by the construction of a phase diagram. The resulting steady state
equilibrium is a saddle point.

The main contribution of this paper is the connection made between the new
growth theory and the human capital theory. The production function of human
capital, as used in this paper, can be used in standard applications of the human
capital theory in order to conclude upon the contribution of education to economic
growth, the productive efficiency of the educational sector, the optimal length of
schooling spells and the optimal level of the cost of schooling.
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