Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches

Asare-Kyei, Daniel, Forkuor, Gerald and Venus, Valentijn, (2015). Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches. Water, 7(7), 3531-3564

Document type:
Article
Collection:

Metadata
Links
Versions
Statistics
  • Sub-type Journal article
    Author Asare-Kyei, Daniel
    Forkuor, Gerald
    Venus, Valentijn
    Title Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches
    Appearing in Water
    Volume 7
    Issue No. 7
    Publication Date 2015-07-06
    Place of Publication Basel
    Publisher Multidisciplinary Digital Publishing Institute (MDPI)
    Start page 3531
    End page 3564
    Language eng
    Abstract Robust risk assessment requires accurate flood intensity area mapping to allow for the identification of populations and elements at risk. However, available flood maps in West Africa lack spatial variability while global datasets have resolutions too coarse to be relevant for local scale risk assessment. Consequently, local disaster managers are forced to use traditional methods such as watermarks on buildings and media reports to identify flood hazard areas. In this study, remote sensing and Geographic Information System (GIS) techniques were combined with hydrological and statistical models to delineate the spatial limits of flood hazard zones in selected communities in Ghana, Burkina Faso and Benin. The approach involves estimating peak runoff concentrations at different elevations and then applying statistical methods to develop a Flood Hazard Index (FHI). Results show that about half of the study areas fall into high intensity flood zones. Empirical validation using statistical confusion matrix and the principles of Participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77% to 81%. This was supported with local expert knowledge which accurately classified 79% of communities deemed to be highly susceptible to flood hazard. The results will assist disaster managers to reduce the risk to flood disasters at the community level where risk outcomes are first materialized.
    UNBIS Thesaurus RISK ASSESSMENT
    FLOODS
    WEST AFRICA
    GEOGRAPHIC INFORMATION SYSTEMS
    Copyright Holder The Authors
    Copyright Year 2015
    Copyright type Creative commons
    DOI 10.3390/w7073531
  • Versions
    Version Filter Type
  • Citation counts
    Scopus Citation Count Cited 0 times in Scopus Article
    Google Scholar Search Google Scholar
    Access Statistics: 709 Abstract Views  -  Detailed Statistics
    Created: Thu, 13 Aug 2015, 19:29:44 JST