Browse by all authors Refine By Author Name - "Stinckwich, Serge"

Browse Results (6 results found)

Subscribe to the RSS feed for this result set  Subscribe to the RSS feed for this result set
 
  Abstract Views File Downloads
Tan, Yi-Roe, Agrawal, Anurag and Stinckwich, Serge, (2022). A call for citizen science in pandemic preparedness and response: beyond data collection. BMJ Global Health, 7(6), n/a-n/a 102 31
Combemale, Benoit, Kienzle, Jorg, Mussbacher, Gunter, Ali, Hyacinth, Amyot, Daniel, Bagherzadeh, Mojtaba, Batot, Edouard, Bencomo, Nelly, Benni, Benjamin, Bruel, Jean-Michel, Cabot, Jordi, Cheng, Betty, Collet, Philippe, Engels, Gregor, Heinrich, Robert, Jezequel, Jean-Marc, Koziolek, Anne, Mosser, Sebastien, Reussner, Ralf, Sahraoui, Houari, (2021). A Hitchhiker's Guide to Model-Driven Engineering for Data-Centric Systems. IEEE Software, 38(4), 71-84 653  
Philippe de Wilde, Payal Arora, Fernando Buarque, Yik Chin, Thinyane, Mamello, Stinckwich, Serge, Eleonore Fournier-Tombs and Tshilidzi Marwala (2024). Recommendations on the Use of Synthetic Data to Train AI Models. United Nations University. 186 1536
Tshilidzi Marwala, Eleonore Fournier-Tombs and Stinckwich, Serge (2023). Regulating Cross-Border Data Flows: Harnessing Safe Data Sharing for Global and Inclusive Artificial Intelligence. UNU Technology Brief. United Nations University. 324 996
Fodjo, A. Yvan Guifo, Ziane, Mikal, Stinckwich, Serge, Bui, Thi-Mai-Anh and Bowong, Samuel, "Separation of Concerns in Extended EpidemiologicalCompartmental Models" 15th International Joint Conference on Biomedical Engineering Systems and Technologies, Online, 2022/02. 88 32
Tshilidzi Marwala, Eleonore Fournier-Tombs and Stinckwich, Serge (2023). The Use of Synthetic Data to Train AI Models: Opportunities and Risks for Sustainable Development. UNU Technology Brief. United Nations University. 650 1611