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1. Introduction

In evolutionary game theory, interacting groups within a population play genetically

predetermined, distinguishable strategies. To each group a payoff is awarded, representing the

fitness of this group. This payoff depends not only on the strategy employed by this group,

but also on the strategies used by the other groups in combination with the distribution of the

population over its subgroups. Fitness can be seen as a measure of potential to reproduce, and

the evolution of the population share of each subgroup is axiomatically in accordance with

its relative fitness.

Models in evolutionary game theory predominantly employ (bi)linear fitness functions,

and assume the evolution of the composition of the population to be described by the so-

called replicator dynamics. Recently, interesting contributions have appeared in the literature

which use more general fitness functions or population dynamics. For instance, Hofbauer and

Sigmund (1988) employ the replicator dynamics as selection dynamics for mathematical

models derived from biological systems, which yield very general fitness functions. Nachbar

(1990) and Friedman (1991) investigate general classes of ’evolutionary’ dynamics, while the

latter additionally admits general fitness functions.

What seems to motivate these contributions, is that the fitness function, as well as the

dynamical process describing the evolution of the population, are strongly situation-dependent.

An additional motivation for increasing the generality of these concepts, is the circumstance

that evolutionary approaches are rapidly gaining popularity outside game theory or

mathematical biology. In economics, for example, evolutionary dynamics are used to describe

the evolution of the market shares of oligopolists, or to model the diffusion of technologies

[e.g. Silverberg (1988)]. Game theory is used in other social sciences, where dynamical

processes quite similar to evolutionary processes, may be employed to explain, for instance,

the emergence of conventions as in Young (1993), or cooperation as in Axelrod (1984). Given

this vast potential of applications, it is not clear beforehand that the replicator dynamics

should be the only relevant evolutionary dynamics for all biological settings, let alone for all

economical or social settings. Nor is it obvious why (bi)linear fitness functions should be the

only type of fitness functions considered. Nevertheless, there seems to exist some reluctance

to abandon (bi)linear fitness functions and replicator dynamics.

We generalize the approaches Nachbar (1990) and Friedman (1991) in the line of
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Hofbauer and Sigmund (1988). Our aim is to develop concepts which are meaningful for very

general ’evolutionary’ settings, yet come close to established results, when applied to standard

evolutionary games. We assume that all strategical interactions, as well as all other relevant

influences, are fully captured by a continuous function, namely the relative fitness function.

A relative fitness function attributes for every state to each subgroup in the population the

difference between the subgroup’s fitness and the population share weighted average fitness

of the population. By definition, a relative fitness function satisfies complementarity. We

assume furthermore that the population dynamics are weakly compatible with the relative

fitness function. Weakly compatible dynamics formalize that the change in population share

of any nonextinct subgroup corresponds in sign with the relative fitness of this subgroup.

Our main equilibrium concepts are the saturated equilibrium and the evolutionary

stable equilibrium. At a saturated equilibrium each subgroup with positive population share

has highest (relative) fitness. We prove existence of at least one saturated equilibrium for

arbitrary relative fitness functions, and demonstrate that each saturated equilibrium is a rest

point for weakly compatible dynamics. If any trajectory starting in the interior of the state

space converges, its limit point is necessarily a saturated equilibrium. Our analysis implies

furthermore that any stable equilibrium is a saturated equilibrium, whereas any equilibrium

which is not a saturated equilibrium, is unstable for all weakly compatible dynamics. The

evolutionary stable equilibrium is defined in terms of local properties of the population

dynamics. While each evolutionary stable equilibrium is an asymptotically stable equilibrium,

the converse statement need not hold. It is namely proven that any trajectory reaching a

certain neighborhood of an evolutionary stable equilibrium, converges towards it and the

Euclidean distance to the equilibrium strictly decreases in time as the trajectory approaches

it. A saturated equilibrium is shown to correspond with a Nash-equilibrium in standard models

in evolutionary game theory. The dynamic properties of the evolutionary stable equilibrium

suggest that this concept is an adequate dynamic pendant of the evolutionary stable strategy.

We address the topics of multiplicity, stability and computability of equilibria of

weakly compatible dynamics for arbitrary relative fitness functions, as well as for less general

settings. We derive conditions on the dynamical system for uniqueness of an interior saturated

equilibrium, which imply either asymptotical stability, or instability of this equilibrium. The

dynamical system is generally nonlinear, and even low-dimensional nonlinear dynamical

systems may display an astonishing degree of complexity. Hence, researchers interested in
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finding saturated equilibria may encounter severe computational problems. We propose

therefore the following procedure. All vertices of the unit simplex are checked, which

generally is fairly easy to accomplish from a computational point of view. To find other

saturated equilibria a variable dimension restart algorithm to solve the so-called nonlinear

complementarity problem, may be employed. Such an algorithm may be started in an arbitrary

point of the unit simplex, and converges to an arbitrarily accurate approximation of a

saturated equilibrium for arbitrary relative fitness functions. A variable dimension restart

algorithm accomplishes this feat under precisely the conditions which guarantee existence of

at least one saturated equilibrium, namely continuity and complementarity of the relative

fitness function. The algorithm of Doupet al. (1987) seems the most efficient in this class

of algorithms for the problem studied.

This paper is organized as follows. In Section 2, we give a brief overview of related

work in evolutionary game theory and economics, dynamical systems, and equilibrium

programming. We formulate the model in Section 3. In Section 4, we define the saturated

equilibrium and the evolutionary stable equilibrium and we compare these concepts with other

equilibrium concepts, dynamic as well as game-theoretical. In Section 5, we study conditions

on the dynamical system which have consequences on the stability and the multiplicity of

dynamic equilibria. We focus on some fundamental problems connected with finding

equilibria in Section 6, and give the procedure to find equilibria, which may include an

algorithm to approximate saturated equilibria. Section 7 concludes.

2. Related literature

Maynard Smith and Price (1973) have introduced the central concept in evolutionary game

theory, the evolutionary stable strategy. An evolutionary stable strategy is a Nash-equilibrium

which satisfies an additional strategic stability requirement. This stability requirement aimes

to formalize that when the population is invaded by any mutant strategy, this mutant strategy

performs worse than the original equilibrium strategy, in the strategic environment that arises

by its invasion, provided that the new strategic environment is sufficiently similar to the

equilibrium strategic environment. Consequently, the mutant strategy is supposed to be driven

out and the equilibrium strategy is to prevail in the long run. It is widely recognized that the
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evolutionary stable strategy is an essentially static concept, not a dynamic concept as the idea

behind it would suggest. Real evolutionary stability requires a dynamic stability concept.

Not until Taylor and Jonker (1978), did the replicator dynamics appear in evolutionary

game theory to describe the evolution of the composition of a population. Taylor and Jonker

(1978) and Zeeman (1981) investigate relations of the evolutionary stable strategy with

several dynamic equilibrium concepts for the replicator dynamics. They show that every

evolutionary stable strategy is an asymptotically stable state of the replicator dynamics, and

that not every asymptotically stable strategy is an evolutionary stable strategy. Though

alternative evolutionary dynamics have been proposed [cf. Nachbar (1990), Friedman (1991)],

the replicator dynamics virtually monopolize the literature. Hofbauer and Sigmund (1988) give

an extensive treatment of the replicator dynamics for general relative fitness functions. Hirsch

and Smale (1974) are our main point of reference with regard to nonlinear differential

equations and dynamical systems.

Evolutionary economics is the next of kin to evolutionary game theory in economics,

as it too employs a biological paradigm. Evolutionary economics also uses replicator(-type)

dynamics as selection dynamics, e.g. Nelson and Winter (1982), Iwai (1984), and Silverberg

(1988). The main conceptual difference between evolutionary economics and evolutionary

game theory is that in the latter discipline the number of strategies present is fixed. In

evolutionary economics, new strategies are perpetually appearing as new technologies or

innovations, ’mutations’ in the biological metaphor, which takes these models out of the

framework of the analysis of this paper1. Regardless namely of the evolutionary dynamics

employed, the dynamical system never settles down in the long run. On the other hand, not

every invading mutant need to have a significant

impact on the dynamical system. Hence, temporarily, i.e. in the short run, the system might

very well display inertia or convergence to a certain outcome, until a new invading mutation

has an impact on the system forceful enough to upset this situation. In this context, David

(1985) even argues succesfully that a technically inferior strategy may drive out superior

strategies for prolonged periods of time.

Fixed points of evolutionary dynamics can be associated with equilibria in

noncooperative game theory and economics. In a bounded rationality framework, replicator-

1 Our attention to this point was drawn by Richard Nelson, who commented on an earlier version of this
paper.
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type dynamics are interpreted as learning processes, or processes to motivate equilibrium

selection2. For a large class of evolutionary dynamics, the vertices of the state space are fixed

points. Unfortunately, these fixed points may be dynamically unstable, and finding interior

fixed points or stable fixed points, may be difficult. This is a discouraging prospect since

precisely the stable equilibria of dynamics are relevant for predictions. Doupet al. (1987)

provide an efficient algorithm to solve the nonlinear complementarity problem, which may

be used to find a saturated equilibrium. Van der Laan and Talman (1987) provide a survey

on variable dimension restart algorithms.

3. The evolutionary model

Consider a population which consists of n+1 distinguishable, interacting subgroups. This

interaction of the subgroups has consequences on their respective abilities to reproduce.

Fitness is a measure of ability to reproduce, determined by (genetically given) behavior in

combination with the composition of the population. Since behavior is genetically

predetermined, fitness can be analyzed as depending solely on the composition of the

population, implying fitness to be a function of the population shares of all subgroups. Let

In+1 = {1,2,...,n+1}, and let x = (x1,x2,...,xn+1)
T ∈ Sn = {y∈ n+1 ∑j yj = 1, yi ≥ 0 for all i ∈ In+1}

denote a vector of population shares, henceforth to be called a state. Let E:Sn→ n+1 be a

continuous function, attributing to every subgroup its fitness at each state. We assume that

all stategic interaction, as well as all possible other influences on the fitness of the subgroups,

is fully captured by this function. We suppress time-notations whenever confusion seems

unlikely. The inner product of vectors x,y∈ n+1, is denoted by xTy. For x,y ∈ n+1 the

Euclidean distance is denoted by d2(x,y) = [Σi (yi − xi)
2]1/2. Furthermore, ej, j ∈ In+1, is the

vertex x∈ Sn with xj = 1. For z∈ n+1, we may write for example, z≥ 0, by which we mean

zi ≥ 0 for all i ∈ In+1. Proofs may be found in the Appendix. We denote the cardinality of a

set S by S .

States change over time subject to evolutionary dynamics, which means that if a

subgroup has above-average (below-average) fitness at a certain state, its population share

2 See e.g. Crawford (1985), Gilboa and Matsui (1991), or Kandoriet al. (1992).
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increases (decreases). The relative fitness functionf:Sn→ n+1 is given by

fi(x) = Ei(x) ∑j xj Ej(x) for all i ∈ In+1, x ∈ Sn. (1)

The relative fitness function attributes for every state, to each subgroup, the difference

between the fitness of the subgroup and the average fitness of the population, weighted by

the population shares of all subgroups. To model changes in the composition of the

population, we consider a dynamic process represented by the following system of n+1

(autonomous) differential equations:

dx/dt = G(x) for all x ∈ Sn, (2)

where dx/dt = (dx1/dt,dx2/dt,...,dxn+1/dt)T = (G1(x),G2(x),...,Gn+1(x))T, denotes the continuous-

time change of the population share of each subgroup. This function G is independent of the

time variable, and depends entirely on the composition of the population. Furthermore, this

function must fulfill the criterium of weak compatibility. Given a relative fitness function f,

the function G:Sn→ n+1, is weakly compatibleif

a) G is continuous,

b) Σi Gi(x) = 0 for all x ∈ Sn,

c) xi = 0 implies Gi(x) = 0 for all x ∈ Sn, i ∈ In+1, and

d) xi > 0 implies sign Gi(x) = sign fi(x) for all x ∈ Sn, i ∈ In+1.

For every y∈ , sign y is defined as: sign y = +1 if y > 0, sign y = 0 if y = 0, sign y = −1

if y < 0. Dynamics are weakly compatibleif the function G in (2) is weakly compatible. No

additional restrictions are placed on G in this section. Our definition of weak compatibility

differs from Friedman’s (1991). Most notably, we do not require piecewise differentiability

of G. Furthermore, it should be noted that Friedman defines the dynamics on the Cartesian

product of the strategy-spaces of all subgroups, whereas our dynamics are defined on the state

space formed by the population shares of the subgroups. The replicator dynamics are

represented by dx/dt = (x1f1(x),...,xn+1fn+1(x))T. It is easy to verify that these dynamics fulfill

the criteria for weak compatibility.
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A function, say h:Z→D with Z ⊆ D, satisfies complementarityif xTh(x) = 0 for all x

∈ Z. It can be verified thatfor every relative fitness function f:Sn→ n+1 and for all x ∈ Sn,

it follows that xTf(x) = 0. Hence, for every evolutionary setting the relative fitness function

satisfies continuity and complementarity. By reasoning conversely, the following question

arises. Given a function g:Sn→ n+1, satisfying continuity and complementarity, can we

construct an evolutionary setting such that the resulting relative fitness function is equal to

g? The answer is affirmative, and the argument is straightforward. Take g:Sn→ n+1, satisfying

continuity and complementarity. Let a population consist of n+1 subgroups, and define the

fitness of each subgroup i∈ In+1, at every state x∈ Sn, by Ei(x) = gi(x) + c, where c∈ . The

corresponding relative fitness function f satisfies

fi(x) = (gi(x) + c) − Σj xj (gj(x) + c) = gi(x) for all i ∈ In+1, x ∈ Sn. (2)

This exercise suggests thata relative fitness function is characterized by continuity and

complementarity.To the best of our knowledge there do not exist any additional restrictions

on (relative) fitness functions, which would limit the candidates for such functions to a

smaller class [see also Hofbauer and Sigmund (1988)].

The latter reminded us of some classical results in general equilibrium theory.

Sonnenschein (1972, 1973), Mantel (1974), and Debreu (1974)3 demonstrate that any

continuous function satisfying complementarity can be approximated arbitrarily closely by an

(aggregate or community) excess demand function derived from a pure exchange economy

with utility maximizing agents. In the same context, a Walrasian tâtonnement is a dynamic

process where the change in time of the (relative) price of any good is a sign preserving

function of the excess demand for that good, provided that all prices are strictly positive [cf.

Uzawa (1961)]. If any price becomes equal to zero, boundary restrictions (should) prevent the

process from reaching negative prices. It is well established that excess demand functions for

pure exchange economies are homogeneous of degree zero in the prices. It is therefore

permitted to restrict the analysis of the relative fitness functions, as well as Walrasian

tâtonnement processes, to the unit simplex, i.e. the subset of the all nonnegative prices adding

up to unity. The parallels between excess demand functions and relative fitness functions on

3 Eric van Damme recommended to prove a characterization in the spirit of Sonnenschein, Mantel and
Debreu. Hans Peters and the author found the argument given.
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one hand, and Walrasian tâtonnement processes and weakly compatible dynamics on the

other, are quite striking in our opinion.

We end this section with some examples. The first example is fairly standard [cf.

Bomze and Van Damme (1992)]. The second example is a ’delinearized’ variant of the first.

These examples should not lead to the misconception that our approach is only applicable to

settings which generate such simple relative fitness functions. For instance, in economics the

relevant strategic variables may be (mixes) of variables as prices, quantities of goods

produced, investments allocated, or advertisement expenditures.

Example 3.1. 1 0

Let A = 0 1 , and let s1 = (½,½)T, s2 = (2/3,1/3)T,

s3 = (1/4,3/4)T. We define the fitness functions Ei:S
2→ 3 for all i ∈ I3, by Ei(x)

= (si)T A (Σj=1,2,3 xjs
j).

Hence, E1(x) = ½

E2(x) = ½ x1 + 5/9 x2 + 5/12 x3

E3(x) = ½ x1 + 5/12 x2 + 5/8 x3.

Then the relative fitness functions are

f1(x) = ½ − ½x1(1+x2+x3) − 5/9 (x2)
2 − 5/6x2x3 − 5/8 (x3)

2.

f2(x) = − ½x1(x2+x3) + 5/9 x2(1−x2) + 5/12x3(1−x2) − 5/8 (x3)
2.

f3(x) = − ½x1(x2+x3) − 5/9 (x2)
2 + 5/12x2(1−x3) + 5/8 x3(1−x3).

Example 3.2.Let A, s1, s2 and s3 be as in Example 3.1, let Ei:S
2→ 3 for all i ∈ I3 be

defined by Ei(x) = (si)T A (Σj=1,2,3 xjs
j) + (2−xi)

−1.

Then,

f1(x) = ½ − ½x1(1+x2+x3) − 5/9 (x2)
2 − 5/6x2x3 − 5/8 (x3)

2 +

(1−x1)(2−x1)
−1 − x2(2−x2)

−1 − x3(2−x3)
−1.

f2(x) = − ½x1(x2+x3) + 5/9 x2(1−x2) + 5/12x3(1−x2) − 5/8 (x3)
2 −

x1(2−x1)
−1 + (1−x2)(2−x2)

−1 − x3(2−x3)
−1.

f3(x) = − ½x1(x2+x3) − 5/9 (x2)
2 + 5/12x2(1−x3) + 5/8 x3(1−x3) −

x1(2−x1)
−1 − x2(2−x2)

−1 + (1−x3)(2−x3)
−1.

The parts distinguishing the fitness functions of Example 3.2 from those in Example 3.1, may
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be regarded as state-dependent feedbacks. Arthur (1988), David (1985), and Dosiet al.

(1993), offer motivations for feedbacks in economics. Generally speaking, if there exist

increasing (decreasing) returns to scale, or if there exist externalities, positive (negative) state

dependent feedbacks may be expected.

4. Equilibria of weakly compatible dynamics

The state y∈ Sn is a fixed pointif G(y) = 0 in Equation (3). At a fixed point changes in the

composition of the population come to a rest. The fixed point y∈ Sn is stableif for any

(open) neighborhood U⊂ Sn of y, a neighborhood V⊆ U of y exists such that any trajectory

starting in V remains in U. The stable fixed point y∈ Sn is asymptotically stableif

additionally a neighborhood W⊂ Sn of y exists such that all trajectories starting in a point

of W converge towards y. Hirsch and Smale (1974) treat several methods to examine the

dynamical stability of fixed points. We use Lyapunov’s second method on several occasions,

only partly because of its considerable elegance. An additional reason for employing

Lyapunov’s method is technical. This method does namely not rely on the (partial)

differentiability of the relative fitness function or of the weakly compatible dynamics.

Lyapunov’s method can furthermore be employed to examine the dynamical properties of sets

of points [cf. Uzawa (1961)].

Existence of as many fixed points as there are subgroups in the population, is

(trivially) guaranteed, sincefor weakly compatible dynamics, each vertex of the unit simplex

is a fixed point. Given a relative fitness function f, the state y∈ Sn is a saturated equilibrium4

if f(y) ≤ 0. A saturated equilibrium y is strictif f j(y) = 0 for precisely one j∈ In+1. At a

saturated equilibrium each group with positive population share has highest fitness. Any group

with below-average-fitness has population share equal to zero. The following propositions

pertain to arbitrary relative fitness functions and weakly compatible dynamics.

Finding y ∈ Sn for which z(y) ≤ 0 for a continuous function z:Sn→ n+1 satisfying

complementarity, is called a nonlinear complementarity problem with respect to z. Finding

4 In constrast to Hofbauer and Sigmund (1988) differentiability of the relative fitness function is not
assumed.
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a saturated equilibrium for a relative fitness function f, is a nonlinear complementarity

problem with respect to f.

Proposition 4.1. There exists at least one saturated equilibrium.

Proposition 4.2. Every saturated equilibrium is a fixed point.

It follows straightforwardly that each fixed point located in the interior of the unit simplex

is a saturated equilibrium. Since an unstable interior equilibrium is also a saturated

equilibrium, it is evident that not every saturated equilibrium is stable. The following

propositions show further connections between equilibrium concepts.

Proposition 4.3. Every strict saturated equilibrium is asymptotically stable.

Proposition 4.4. Every stable equilibrium is a saturated equilibrium.

The proof of Proposition 4.4 leads to the following corollary.

Corollary 4.1. No fixed point in the boundary of the unit simplex that isnot a saturated

equilibrium, is reached by any trajectory from the relative interior of the unit simplex.

The state y∈ n+1, is a limit point if there exists a trajectory {z(t)}t≥0 ⊂ Sn, such that G(z(0))

≠ 0 and Limt→∞ z(t) = y. From the continuity of weakly compatible dynamics combined with

the compactness of Sn, it follows that y is a fixed point and that y∈ Sn. By Corollary 4.1,

each limit point for a trajectory starting in the relative interior of the unit simplex, located in

a boundary of the unit simplex, must be a saturated equilibrium. Hence,the set of limit points

for trajectories starting in the interior of the unit simplex is a subset of the set of saturated

equilibria. Trajectories starting in a boundary of the unit simplex, never leave this boundary,

and if such a trajectory converges, the limit point need not be a saturated equilibrium.

However, the limit point of such a trajectory, is a saturated equilibrium with regard to the

restriction of the relative fitness function to this lower-dimensional subset. It is not clear what

the connection between stable equilibria and limit points, is in general. See also Figure 1.
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A fixed point y ∈ Sn, is an evolutionary stable equilibriumif and only if there exists

a neighborhood U⊂ Sn of y satisfying

yTG(x) > xTG(x) for all x ∈ U\{y}. (4)

Let ESE be the set of all evolutionary stable equilibria. Let furthermore ASE and SNTE

denote the sets of all asymptotically stable equilibria and strict saturated equilibria

respectively. The connections between SNTE, ESE and ASE are given in the following

proposition.

Proposition 4.5. SNTE⊆ ESE⊆ ASE.

In the proof of this proposition, we use the function V(x) = − ½Σi (yi − xi)
2, and show that

this function is a strict Lyapunov function for a neighborhood of y, the evolutionary stable

equilibrium. Since, obviously V(x) = −½ (d2(x,y))2, part (a) of the proof of Proposition 4.5,

leads to the following.

Corollary 4.2. The Euclidean distance to an evolutionary stable equilibrium decreases

monotonically in time along any trajectory starting sufficiently close to it.

A geometrical interpretation of Equation (4) is that the angle between (y − x) and G(x) for

all x ∈ U\{y}, is always sharp. This also follows (indirectly) from Corollary 4.2, since if for

any trajectory {x(t)}t≥0 at any point in time t* the angle between (y − x(t*)) and G(x(t*))

would be equal to or more than 90 degrees, then there would exist t’ > t* satisfying

d2((x(t’),y) ≥ d2(x(t*),y).
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Figure 1. (a) y1 is a stable equilibrium, not asymptotically stable, (b) y1, y2, y3 are unstable limit points.
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If a boundary of the unit simplex acts as a repellor no saturated equilibrium exists on

this boundary. Furthermore, there exists a positive threshold value such that certain subgroups

have population shares at least equal to this value in the long run, provided these subgroups

had nonzero population shares initially. The following formalizes this.

Proposition 4.6. If k ∈ K ⊆ In+1 implies fk(x) > 0 whenever xk = 0, thenδ > 0 exists, such

that for all trajectories {x(t)}t≥0 : Lim inf xk(t) ≥ δ provided xk(0) > 0, for all k ∈ K.
t→∞

Proposition 4.6 implies that if the system is subjected to an incidental shock smaller thanδ,

then no group in such a set K will become extinct. We do not model such shocks, but one

can think of real-life systems where a shock is caused by an environmental catastrophe or an

invasion. Furthermore, each saturated equilibrium y, satisfies yk ≥ δ for all k ∈ K. If the

condition of Proposition 4.6 holds for K = In+1, this is sufficient for permanenceof the system

[cf. Hofbauer and Sigmund (1988)]. Permanence of a system implies furthermore that no

group of invading mutants is driven out, which does not necessarily mean that the dynamical

system is in steady turmoil. The system may, for example, possess an asymptotically stable

equilibrium, and return to it after each invasion by a small group of mutants.

Taylor and Jonker (1978) and Zeeman (1981) connect the Nash-equilibrium and the

evolutionary stable strategy, with dynamic equilibrium concepts for the replicator dynamics.

Following their approach, we examine several cases where the relative fitness function

f:Sn→ n+1 is given by

fk(x) = ek
T A x − xT A x for all x ∈ Sn, k ∈ In+1, (5)

where A is an (n+1)×(n+1)-matrix. For the symmetric bimatrix game (A,AT), the mixed

strategy combination (y,y), y∈ Sn, is a symmetric Nash-equilibriumif x T A y ≤ yT A y for

all x ∈ Sn. Furthermore, y∈ Sn is an evolutionary stable strategyif x ∈ Sn, then xT A y ≤ yT

A y, and additionally if x ≠ y and xT A y = yT A y, then xT A x < yT A x. It is well

established that every symmetric bimatrix game possesses a symmetric Nash-equilibrium, that

every symmetric Nash-equilibrium of a symmetric bimatrix game is a fixed point of the

replicator dynamics, that every strict symmetric Nash-equilibrium is an evolutionary stable

strategy, and that every evolutionary stable strategy is an asymptotically stable equilibrium
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for the replicator dynamics [cf. Van Damme (1991)]. The following establishes the

connections between the saturated equilibria of (5), and the Nash-equilibria of the bimatrix

game (A,AT).

Proposition 4.7. The following two statements are equivalent:

i) y is a saturated equilibrium of the relative fitness function given by (5),

ii) (y,y) is a Nash-equilibrium of the bimatrix game (A,AT).

Since saturated equilibria for (5) correspond to symmetric Nash-equilibria of the bimatrix

game (A,AT), the following observations are in order. Any Nash-equilibrium is a fixed point

for weakly compatible dynamics for (5). Furthermore, our analysis implies that any limit point

for a trajectory starting in an interior nonequilibrium point and governed by weakly

compatible dynamics for the relative fitness function (5), corresponds to a Nash-equilibrium

of (A,AT). This generalizes a result in Nachbar (1990). If a fixed point of the weakly

compatible dynamics is stable, it must correspond to a Nash-equilibrium. These observations

indicate that the saturated equilibrium is a suitable generalization of the Nash-equilibrium.

Van Damme (1991) characterizes an evolutionary stable strategy in a symmetric

bimatrix game (A,AT). This characterization ’translates’ into our notations as follows. The

strategy y∈ Sn is an evolutionary stable strategy, if and only if for a relative fitness function

given by (5), there exists a neighborhood U⊆ Sn of y such that

yTf(x) > 0 for all x ∈ U\{y}. (6)

Note the similarities between Equations (4) and (6), where the functions f and G are perfectly

interchangeable, since it should be noted that xTf(x) = 0 for all x ∈ Sn. The geometrical

interpretation of (6) is that the angle between the vectors (y − x) and f(x) in U\{y} is always

sharp. However, the vector f(x)∈ n+1 at x ∈ Sn, may point outward of the unit simplex,

hence it is not possible to employ the function f as population dynamics in Equation (3).

If (6) holds in a neighborhood U⊆ Sn of a saturated equilibrium y for anarbitrary

relative fitness function f, then it follows easily that no saturated equilibrium exists in U\{y}.

In the following we call a state satisfying (6) for an arbitrary relative fitness function in a

reduced neighborhood of this state, a generalized evolutionary stable state. However, since
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asymptotical stability is not implied by (6) for arbitrary relative fitness functions, we think

the generalized evolutionary stable state not to be an ’adequate’ generalization of the

evolutionary stable strategy. Proposition 4.5 and Corollary 4.2 suggests thatthe evolutionary

stable equilibrium is a suitable dynamic generalization of the evolutionary stable statefor

arbitrary relative fitness functions and weakly compatible dynamics. Friedman’s (1991)

evolutionary equilibrium is equivalent to an asymptotically stable state. Let y be a saturated

equilibrium and let Hy:S
n→ n+1, be given by

Hy(x) = (y − x)T(G(x) − f(x)). (7)

Proposition 4.8. If for a saturated equilibrium y there exists a neighborhood U⊆ Sn, such

that Hy(x) < (>) 0 for all x ∈ U, then ’y is an evolutionary stable equilibrium’ implies ’y is

a generalized evolutionary stable state’ (’y is a generalized evolutionary stable state’ implies

’y is an evolutionary stable equilibrium’).

We conclude this section with an analysis of Example 3.1.

Example 3.1 (continued).

The vertices e2 and e3 are strict saturated equilibria, hence evolutionary stable

equilibria, since it can be checked that f1(e2) = −1/18, f3(e2) = −5/36, f1(e3) =

−1/8, f2(e3) = −5/24.

Convex combinations of e1 and (0,3/5,2/5)T, are saturated equilibria, since it can

be confirmed that f1(λe1+(1−λ)(0,3/5,2/5)T) = f2(λe1+(1−λ)(0,3/5,2/5)T) =

f3(λe1+(1−λ)(0,3/5,2/5)T) = 0.

In Figure 2, Example 3.1 is illustrated. The line segment connecting e1 and (0,3/5,2/5)T

separates the basins of attraction of e3 and e2. Trajectories starting above (below) this line

segment, converge to e3 (e2) under all weakly compatible dynamics. No trajectory traverses

this line segment as all of its points are equilibria. The basin of attraction of e3 is larger than

the basin of attraction of e2. All other equilibria have basins of attraction with measure zero.
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e3

e1 e2

(0, 3/5, 2/5)T

0 = f (x) = f (x) = f (x)
1 2 3

f (x) > f (x) , f (x)1 23

f (x) > f (x) , f (x)12 3

Figure 2. The three vertices are saturated equilibria. All convex combinations of e1 and (0,3/5,2/5)T

are saturated equilibria. Note that the set of saturated equilibria consists of compact subsets of S2. The vertices
e2 and e3 are strict saturated equilibria, which implies that they are evolutionary stable equilibria.

5. Multiplicity and stability of equilibria of weakly compatible dynamics

Since each vertex of the unit simplex is a fixed point for weakly compatible dynamics, it

follows easily that the number of fixed points is at least equal to the number of subgroups in

the population. Generically, however, each of the 2n+1 − 2 faces of the n-dimensional unit

simplex contains an equilibrium, though not necessarily a saturated one. We have shown that

at least one saturated equilibrium exists for arbitrary relative fitness functions. Proposition 4.5

implies SNTE ≤ ESE ≤ ASE , whereas furthermore SNTE≤ n+1. In Example 3.1,

there exist two isolated saturated equilibria, whereas all convex combinations of e1 and

(0,3/5,2/5)T are saturated equilibria, illustrating that the set of equilibria consists of compact

subsets of the unit simplex. Note that if the condition of Proposition 4.6 is fulfilled for a set

with cardinality one, all dynamic equilibria in the facet opposite vertex corresponding with
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the index in this set, are not saturated, therefore unstable. For sets with cardinality greater

than one, none of the vertices of the unit simplex is a saturated equilibrium.

The first setting where where more precise statements can be made about the number

of equilibria, is the situation where all saturated equilibria are regular, meaning that the

determinant of the Jacobian matrix of the relative fitness function at such a point exists and

is nonzero. A well-known result is that if all saturated equilibria are regular, their number is

odd [cf. Dierker (1972), Hofbauer and Sigmund (1988)]. Furthermore, Hofbauer and Sigmund

(1988) call a system of which the population dynamics are given by a differentiable function

h: n+1→ n+1, cooperative (competitive) on a set G⊆ n+1, if ∂hi(x)/∂xj ≥ (≤) 0 for all i ≠ j, x

∈ G. We call a system strongly cooperative(competitive) if for a differentiable relative fitness

function f,

∂fi(x)/∂xj > (<) 0 for all i ≠ j and all x ∈ int Sn. (8)

Arrow et al. (1959) consider the case that all goods in an economy are strong gross

substitutes. Mathematically, strong cooperativeness can be viewed as gross substitutability,

where in (8) f:Sn→ n+1 is an excess demand function and x∈ Sn is a vector of normalized

prices. The following lemma is well-known in mathematical economics, and we employ this

lemma in the proof of the ensuing proposition.

Lemma 5.1. If all commodities are strongly gross substitutes, the excess demand function

satisfies homogeneity of degree zero, and there exists a positive equilibrium price vector, then

this price vector is uniquely (up to a scalar multiple) determined.

Proposition 5.1. For a strongly cooperative system, if there exists an interior equilibrium,

then it is the unique interior equilibrium.

For a strongly competitive evolutionary system with relative fitness function f, the system

with relative fitness function −f is strongly cooperative. Proposition 5.1 shows that if an

interior equilibrium y exists for the system with relative fitness function −f, then y is the

unique interior equilibrium. Hence, y is the unique interior equilibrium for f.

The following lemma is a straightforward application of a theorem of Uzawa (1961)
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to the present framework.

Lemma 5.2. If, for a strongly cooperative system, there exists an interior equilibrium, then

each trajectory of weakly compatible dynamics starting in the interior of Sn, converges to it.

If the conditions of Lemma 5.2 are fulfilled, then the interior equilibrium is asymptotically

stable. Conversely, if a system is strongly competitive, the interior equilibrium is unstable.

If strong cooperativeness (competitiveness) is weakened by∂fi(x)/∂xj ≥ (≤) 0 for all i ≠ j and

for all x ∈ Sn in (8), then uniqueness of the interior equilibrium need not hold [cf. Uzawa

(1961)]. However, all trajectories for weakly compatible dynamics starting in the interior of

Sn converge to some interior equilibrium.

If a strongly cooperative system is permanent, then Proposition 4.6 implies that every

saturated equilibrium lies in the interior of Sn, whereas Proposition 5.1 implies that there

exists only one equilibrium in the interior of Sn. By Lemma 5.2 this point is asymptotically

stable, hence NTE = ASE = 1, where NTE denotes the number of saturated

equilibria. If, for a strongly competitive system, it holds that fi(x) < 0 whenever xi = 0, then

Proposition 4.3 implies that every vertex of Sn is an asymptotically stable equilibrium.

Proposition 5.1 and Lemma 5.2 show that exactly one interior equilibrium exists, which is

unstable, and therefore NTE > ASE≥ SNTE = n+1. We conclude this section with

a qualitative analysis of Example 3.2.

Example 3.2. (continued)

First we compute all partial derivatives∂fi(x)/∂xj for i ≠ j.

∂f1(x)/∂x2 = −½x1 − (10/9)x2 − (5/6)x3 − 1/(2−x2) − x2(2−x2)
−2,

∂f1(x)/∂x3 = −½x1 − (5/6)x2 − (10/8)x3 − 1/(2−x3) − x3(2−x3)
−2,

∂f2(x)/∂x1 = −½(x2+x3) − 1/(2−x1) − x1(2−x1)
−2,

∂f2(x)/∂x3 = −½x1 + (5/12)(1−x2) − (10/8)x3 − 1/(2−x3) − x3(2−x3)
−2,

∂f3(x)/∂x1 = −½(x2+x3) − 1/(2−x1) − x1(2−x1)
−2,

∂f3(x)/∂x2 = −½x1 − (10/9)x2 + (5/12)(1−x3) − 1/(2−x2) − x2(2−x2)
−2.

It is obvious that∂f1(x)/∂x2, ∂f1(x)/∂x3, ∂f2(x)/∂x1, ∂f3(x)/∂x1 are negative for all

x ∈ Sn. Furthermore, note that

∂f2(x)/∂x3 = −½x1 + (5/12)(1−x2) − (10/8)x3 − 1/(2−x3) − x3(2−x3)
−2
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= −½(x1+x2+x3) + 5/12 + (1/12)x2 − ((10/8)−½)x3 − 1/(2−x3)

− x3(2−x3)
−2

= −(1/12)(1−x2) − (3/4)x3 − 1/(2−x3) − x3(2−x3)
−2.

Similarly, we obtain

∂f3(x)/∂x2 = −(1/12)(1−x3) − (11/18)x3 − 1/(2−x2) − x2(2−x2)
−2.

This implies that the evolutionary system isstrongly competitive.

Since f2(e1) = f3(e1) = −½, f1(e2) = −5/9, f3(e2) = −23/46, f1(e3) = −5/8, f2(e3) =

−17/24, the three vertices of the unit simplex are evolutionary stable equilibria

for arbitrary weakly compatible dynamics.

By Proposition 5.1 there exists at most one interior equilibrium, and Lemma 5.2

states that this equilibrium is unstable for weakly compatible dynamics.

If we restrict the relative fitness function to any of the facets of the unit simplex,

then this yields a strongly competitive system on this facet. By Proposition 5.1

there exists at most one interior equilibrium on this facet, whereas by Lemma 5.2

this equilibrium is unstable.

Concluding, there exist three evolutionary stable equilibria, three equilibria on

each of the facets of the unit simplex, and at most one interior equilibrium.

6. Finding equilibria of weakly compatible dynamics

Simulation is quite popular in the evolutionary branches of game theory and economics. The

most common practice is to use discrete-time variants of the continuous-time dynamics as an

approximation of the latter. Simulation may indeed provide some insights in the properties

of the dynamical system. However, simulation in order to find equilibria may be unpractical

for a number of reasons. For large numbers of subgroups in a population, the simulated

dynamics are less tractable and computational efforts generally become quite considerable.

An additional difficulty is that weakly compatible dynamics become ’slow’ near the

boundaries of the unit simplex. It might therefore seem as if a trajectory converges to a point

on such a boundary, while the real limit point is located elsewhere. This phenomenon is

termedpseudo-convergencein Nachbar (1992). Furthermore, there exist problems of a more

fundamental nature. Dekel and Scotchmer (1992) show that simulated dynamics

19



approximating discrete-time replicator dynamics, may spiral outward to the boundaries of the

unit simplex [see also Weissing (1990)]. Related to this, is the problem ofcycling, i.e., a

certain sequence of points is repeated infinitely, without reaching an equilibrium. Firstly,

detecting that the simulated dynamics cycle requires a large memory size of the computer,

since it may take many iterations before a sequence of points repeats itself. Secondly, there

is the problem that simulated dynamics may cycle, while the real continuous-time dynamics

do not. For generalized Rock-Scissors-Paper games, where continuous-time replicator

dynamics admitstable limit cyclesonly for populations with four or more subgroups,

Weissing (1990) shows existence of stable limit cycles already for three subgroups for

discrete-time replicator dynamics. Finally, we have generalized the relative fitness functions

and the population dynamics considerably, hence existence ofstrange attractorsmust be

anticipated (see Figure 3). It is unknown what the behavior of the discrete-time dynamics in

the presence of strange attractors, is in general. Therefore, although the rest points of

continuous-time and discrete-time dynamics concur, their qualitative behaviors may be very

different. Hence, conclusions about (non−) convergence of continuous dynamics should not

be based on simulated dynamics, which are discrete by conception.

e3

e1 e2

Figure 3. Adaptation from Varian (1978). Example due to Scarf (1960).
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The force driving weakly compatible evolutionary dynamics is the relative fitness

function, which fulfills the requirements of an excess demand function for a pure exchange

economy, namely continuity and complementarity. The results of Sonnenschein (1972,1973),

Mantel (1974) and Debreu (1974) imply that problem of finding a saturated equilibrium is

(mathematically) equivalent to finding an economic equilibrium. Many methods have been

suggested in the literature to find economic equilibria, which may provide solutions to find

saturated equilibria forsome relative fitness functions [e.g., Smale (1976)]. However, the

results of Saari and Simon (1978) and Saari (1985) imply that, to find saturated equilibria for

arbitrary relative fitness functions, one should rely on Scarf-type algorithms [Scarf (1973)].

One such algorithm is the variable dimension restart algorithm of Doupet al. (1987).

This simplicial algorithm is globally convergent, which means that it converges to an

approximation of a saturated equilibrium for arbitrary relative fitness functions while being

started from an arbitrary point of the unit simplex. The algorithm employs a simplicial

subdivision of the unit simplex depending on the starting point of the algorithm. A piecewise

linear path in a sequence of adjacent simplices of variable dimension is generated, connecting

the starting point with an approximation of a saturated equilibrium. Whenever accuracy is not

satisfactory, the algorithm is restarted in this approximating solution using a finer simplicial

subdivision and a more accurate approximation is generally found. This (2n+1−2)-ray algorithm

of Doupet al. (1987) seems to be the most efficient in the class of variable dimension restart

algorithms. We think that describing a variable dimension restart algorithm in detail would

go beyond the scope of this paper. For an illustration we refer to Figure 4.
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Figure 4. The algorithm approximately follows the heavy curve leading from the starting point v to the saturated
equilibrium p. The rays leaving v are indicated by broken lines. The vector (+1,−1,−1)T denotes a set where (sign
f1(x),sign f2(x),sign f3(x))T = (+1,−1,−1)T; fi=0 denotes a curve where fi(x)=0.

7. Conclusions and discussion

We investigated an evolutionary model, while relaxing several assumptions with respect to

fitness functions and population dynamics. For this purpose, we introduced the relative fitness

function, which attributes for every state to each subgroup in a population its fitness relative

to the average fitness. In deriving the majority of our results, we have only required

continuity of this relative fitness function, which satisfies complementarity by definition. We

specified a class of evolutionary population dynamics, called weakly compatible dynamics,

under which the change in the population share of each nonextinct subgroup corresponds in

sign with the relative fitness of this subgroup. We introduced the saturated equilibrium,

showed that the set of saturated equilibria is nonempty for arbitrary relative fitness functions,

and that each saturated equilibrium is a fixed point for weakly compatible dynamics. At a
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saturated equilibrium, every subgroup with positive population share has highest fitness.

Additionally, an evolutionary stable equilibrium was defined, having very attractive dynamic

properties. Every trajectory reaching a certain neighborhood of an evolutionary stable

equilibrium converges towards it, while the Euclidean distance to the equilibrium strictly

decreases monotonically. For traditional evolutionary games, a saturated equilibrium

corresponds with a symmetric Nash equilibrium. The dynamic properties of the evolutionary

stable equilibrium suggest that this concepts is an adequate dynamic generalization of the

well-known evolutionary stable strategy.

There exist striking mathematical similarities between the relative fitness functions of

evolutionary approaches used in game theory, and other social sciences on one hand, and the

excess demand functions for pure exchange economies on the other. Both type of functions

satisfy continuity and complementarity. Furthermore, a saturated equilibrium corresponds with

an economic equilibrium, whereas weakly compatible dynamics for a given relative fitness

function correspond with a Walrasian tâtonnement process for an excess demand function of

the same mathematical form (see also Table I). A parallel to Sonnenschein (1972, 1973),

Mantel (1974) and Debreu (1974), stating that continuity and complementarity are the

properties which characterize excess demand functions, seems to exist for relative fitness

functions. Hence, as is widely recognized in general equilibrium theory, we should anticipate

any dynamic process on the unit simplex as the outcome of weakly compatible dynamics

combined withsomerelative fitness function. It is well known in economics, that multiple

equilibria exist even in ’simple’ cases [cf. Kehoe (1988)], and that tâtonnement-type dynamics

based on excess demand functions, possess strange attractors such as stable limit cycles [cf.

Scarf (1960)].

The price to pay for the increased generality of our model, is therefore that finding

or computing equilibria with certain stability requirements may be quite hard. We propose a

two-step method to find saturated equilibria. First all vertices of the unit simplex are

examined. Each strict saturated equilibrium is asymptotically stable and these equilibria are

necessarily vertices of the state space. To find other, in particular interior, saturated equilibria,

variable dimension restart algorithms provide a solution. A variable dimension restart

algorithm designed for the nonlinear complementarity problem, converges to an arbitrarily

accurate approximation of a saturated equilibrium within a finite number of steps for arbitrary

relative fitness functions. Research indicates that the algorithm of Doupet al. (1987) is the
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most efficient variable dimension restart algorithms. Having approximated a saturated

equilibrium, further analysis may be undertaken. The conditions for an evolutionary stable

equilibrium are readily checked, whereas checking other types of stability generally involves

a rather elaborate analysis. It should be noted that equilibria which are ’refinements’ of the

saturated equilibrium need not exist in general. Hence, if there were to exist an algorithm that

terminates exclusively with such an equilibrium, it may not terminate at all in some cases.

Evolutionary game theory Pure exchange economies with normalized prices

Relative fitness function Excess demand function

Complementarity of the relative fitness Walras’ Law

function

Saturated equilibrium (Nash equilibrium) Economic equilibrium

Weakly compatible dynamics Walrasian tâtonnement process

Permanence Desirability of all goods

Cooperative system ’Gross substitutes’-case

Evolutionary Stable Strategy (Local) ’revealed preferences’ at equilibrium

Strategic versus evolutionary stability Hicksian versus Samuelsonian stability

Table I. Mathematical similarities shown, found or exploited in this paper.

We see an extension of our approach in the rapidly expanding field of adaptive

learning. The dynamics employed in this paper, weakly compatible dynamics, can be

interpreted as adaptive learning dynamics in a bounded rationality context to formalize

inductive learning. For learning dynamics however, the condition which guarantees forward

invariance, Condition c, is not mandatory. It may consequently be replaced by a weaker

version. If weakly compatible dynamics converge from the interior of the state space, they

converge towards a point which possesses properties, which are similar to those of a Nash-

equilibrium.

Our approach may be used to investigate settings in biology or economics where rather

complex relative fitness functions and dynamics are required. Neither any nonlinearities of

the relative fitness function or the weakly compatible dynamics, nor high dimensionality of

the dynamical system, pose unsurmountable problems. Existence of at least one saturated

equilibrium remains guaranteed, and it may be found by the method proposed.
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We have argued repeatedly in this paper that there exist mathematical similarities

between certain concepts in seemingly distant subdisciplines of economics. The literature on

excess demand functions for pure exchange economies and price adjustment dynamics derived

from these excess demand functions, is vast. It may prove fruitful to examine the applicability

of certain price adjustment processes as plausible alternative evolutionary or learning

dynamics. For instance, Nikaidô (1959) introduced a tâtonnement process described by the

so-called Brown-Von-Neumann differential equations, and (re)introducing a variant of these

dynamics in game theory as evolutionary dynamics seems to offer one such plausible

alternative.

APPENDIX

Proof 4.1: Let F be the point-to-set mapping from Sn to the subsets of Sn, for every

x ∈ Sn defined by

F(x) = conv({ej fj(x) = maxi fi(x), i ∈ In+1}).

Then F is upper-semicontinuous, and for every x∈ Sn the set F(x) is

nonempty, convex and compact. From Kakutani (1974), it follows that there

exists y∈ Sn, satisfying y∈ F(y).

Let c = maxi fi(y) and let T = {k fk(y) = c}. Since y∈ F(y) it follows that

nonnegative numbersλj, j ∈ T, summing up to one, exist, such that

y = Σj∈T λj ej.

Since yj = 0 for all j ∉ T, we obtain:

0 = yTf(y) = Σj∈T yj fj(y) + Σj∉T yj fj(y) = Σj∈T yj fj(y) = Σj∈T λj ej c = c.

Consequently, maxi fi(y) = 0, i ∈ In+1, which proves the proposition.

Proof 4.2: Let y ∈ Sn satisfy f(y) ≤ 0. Then it follows by complementarity that for

every j ∈ In+1 precisely one of the following situations occurs

(a) yj > 0 and fj(y) = 0,

(b) yj = 0 and fj(y) ≤ 0.

Both imply G(y) = 0 by definition.
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Proof 4.3: Let y ∈ Sn be a strict saturated equilibrium.

By definition there exists some j∈ In+1 satisfying 0 = fj(y) > maxi≠j f i(y),

then 0 =Σi yi fi(y) = yj fj(y) + Σi≠j yi fi(y) = Σi≠j yi fi(y) ≤

Σi≠j yi maxi≠j f i(y) = (1−yj) maxi≠j f i(y) ≤ 0. This implies yj = 1.

Since f is continuous, an∈ > 0 and aδ > 0 exist, satisfying fi(x) < −∈ for

all i ≠ j and all x ∈ U = {u ∈ Sn 1 − uj < δ}. Then, complementarity

implies fj(x) = − Σi≠j xi fi(x)/xj > 0 for all x ∈ U\{y}.

Furthermore, G(y) =0 by Proposition 4.2, whereas x∈ U\{y} implies

sign Gi(x) ≤ 0 for all i ≠ j, (9)

sign Gj(x) > 0. (10)

Let V:U→ be defined by V(x) = (xj − 1) − Σi≠j xi for all x ∈ U.

Clearly, V(y) = 0 and V(x) < 0 for all x∈ U\{y}. Since ∂V(x)/∂xj = 1 and

∂V(x)/∂xi = −1, i ≠ j, dV(x)/dt = Σk ∂V(x)/∂xk Gk(x) = Gj(x) − Σi≠j Gi(x).

Hence, dV(y)/dt = 0, and (9) and (10) imply dV(x)/dt > 0 for all

x ∈ U\{y}. Therefore, V is a strict Lyapunov-function on U, and y is

asymptotically stable.

Proof 4.4: Suppose y is a stable equilibrium and y is not a saturated equilibrium.

Then fj(y) > 0 and yj = 0 for some j∈ In+1. Since f is continuous,∈ > 0

andδ > 0 exist such that fj(x) > ∈ for all x ∈ U, where U = {u ∈ Sn

maxi ui−yi < δ, i ∈ In+1}.

Let {z(t)} t≥0 be a trajectory with z(0)∈ U and let zj(0) = α > 0. Since

zj(0) = α and fj(z(0)) > ∈, it follows that sign Gj(z(0)) = +1, implying

Gj(z(0)) > 0. Furthermore, zj(t) > zj(0) and Gj(z(t)) > 0 while

{z(t)} t≥0 ⊂ U. Then {zj(t)} t≥0 increases monotonically while {z(t)}t≥0 ⊂ U.

Hence, there exists t* > 0 such that maxi zi(t*)−y i = δ, i ∈ In+1, thus

z(t*) ∉ U. This leads to a contradiction as for U no neighborhood V⊆ U

of y exists such that a trajectory {z(t)}t≥0 with z(0) ∈ V and zj(0) > 0

remains in U.

Proof 4.5: a) ESE⊆ ASE.

Let y be an evolutionary stable equilibrium and let U⊂ Sn be the
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neighborhood of y where (4) holds. Let V:Sn→ be given by

V(x) = − ½ Σi (yi − xi)
2, then V(y) = 0, and V(x) < 0 for all x ∈ U\{y}.

Furthermore, dV(y)/dt = 0 and dV(x)/dt =Σi ∂V(x)/∂xi dxi/dt =

Σi (yi − xi) Gi(x) = yTG(x) − xTG(x) > 0 for all x ∈ U\{y}. This means that

V is a strict Lyapunov-function on U, hence y is asymptotically stable.

b) SNTE⊆ ESE.

Let y = ej, j ∈ In+1 be a strict saturated equilibrium, then from the proof

of Proposition 4.3, it follows that there exists a neighborhood U such that

(9) and (10) hold in U\{y}. Hence, x∈ U\{y} implies y j − xj > 0, and

yi − xi ≤ 0 for all i ≠ j. Therefore, (yj − xj) Gj(x) > 0, as well as

(yi − xi) Gi(x) ≥ 0 for all i ≠ j, x ∈ U\{y}. Hence, (y − x)TG(x) > 0 for all

x ∈ U\{y}.

Proof 4.6: Let K ⊆ In+1 satisfy fk(x) > 0, whenever xk = 0 for all k ∈ K. Let S(K) =

{x ∈ Sn xk = 0, for some k∈ K}.

Since f is continuous, there existsδk > 0 for each k∈ K, such that xk < δk

implies fk(x) > 0. Now, take 0 <δ < min {δk k ∈ K}, and U = {u ∈ Sn

uk ≤ δ for all k ∈ K}, and let V:U→ n+1 be given by V(x) = mink∈K xk for

all x ∈ U.

Clearly, V(x) = 0 for all x ∈ S(K), V(x) > 0 for all x ∈ U\S(K).

Furthermore dV(x)/dt =Σj ∂V(x)/∂xj dxj/dt = Gi* (x), where i* ∈ K is some

index satisfying xi* = mink∈K xk. Therefore, if x∈ S(K), then Gi* (x) = 0, and

if x ∈ U\S(K), then Gi* (x) > 0.

Hence dV(x)/dt = 0 for all x ∈ S(K), whereas dV(x)/dt > 0 for all

x ∈ U\S(K), implying that V is a strict Lyapunov-function on U. Hence,

S(K) acts as a repellor for each trajectory {z(t)}t≥0 with z(0) ∈ U\S(K),

since {V(z(t))}t≥0 increases strictly while {z(t)}t≥0 ⊂ U\S(K).

Therefore, t*≥ 0 exists, satisfying V(z(t*)) =δ, hence the trajectory leaves

U. This completes the proof, as no trajectory reaches U from Sn\U.

Proof 4.7: Let y be a saturated equilibrium for the relative fitness function f

given by (5). Since yj > 0 leads to fj(y) = 0 = maxi fi(y), it follows that
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yj > 0 implies ej
T A y = maxi ei

T A y.

Furthermore, ej
T A y < maxi ei

T A y implies yj = 0, which in turn implies

(y,y) is a Nash equilibrium of the bimatrix game (A,AT).

Conversely, let (y,y) be a Nash equilibrium of the bimatrix game (A,AT).

Then, yj > 0 implies ej
T A y = maxi ei

T A y.

Let T = {j ∈ In+1 ej
T A y = maxi ei

T A y}, then yT A y = Σk yk ek
T A y

= Σk∈T yk (maxi ei
T A y) = maxi ei

T A y. This immediately implies

f(y) ≤ 0 for the relative fitness function f given by (5).

Proof 4.8: Let y be a saturated equilibrium, let Hy:S
n→ n+1 be given by (7), and let

U ⊆ Sn be a neighborhood of y, such that Hy(x) > 0 for all x ∈ U.

Then Hy(x) = (y − x)T(G(x) − f(x)) > 0, therefore (y − x)TG(x) >

(y − x)Tf(x) = yTf(x). Hence, (6) implies (4). By reverting all inequalities,

we obtain the reverse implication.

Proof 5.1: Let f be a relative fitness function, differentiable at all x∈ Sn. Let

∂fi(x)/∂xk > 0 for all k ≠ i, x > 0. Let y ∈ Sn satisfy y >0 and f(y) = 0.

Define for every p∈ n+1, p > 0, the excess demand function F by

F(p) = f(x(p)), where x(p)≡ p/(Σj pj), j ∈ In+1.

For p ∈ n+1, p > 0, F is continuous, pTF(p) = (Σj pj) x(p)Tf(x(p)) = 0, and

F is positively homogeneous of degree zero, F(λp) = F(p) for anyλ > 0.

F is differentiable, moreover∂Fi(p)/∂pk = (Σj pj)
−1 ∂fi(x(p))/∂xk(p) > 0.

By Lemma 5.1, it follows for an excess demand function fulfilling these

conditions, that

(a) there exists q∈ n+1, q > 0, satisfying F(q) =0, and

(b) if F(p) = 0 for some p >0, then p =λ q for someλ > 0.

Let q > 0 and F(q) =0. Then x(q)∈ Sn, and F(q) = F(x(q)) = 0.

Then x(q) = y, in view of b, which completes the proof.
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