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Disappearing cities on US coasts

Leonard O. Ohenhen1,2 ✉, Manoochehr Shirzaei1,2,3, Chandrakanta Ojha4, Sonam F. Sherpa5,6 & 
Robert J. Nicholls7

The sea level along the US coastlines is projected to rise by 0.25–0.3 m by 2050, 
increasing the probability of more destructive flooding and inundation in major 
cities1–3. However, these impacts may be exacerbated by coastal subsidence— 
the sinking of coastal land areas4—a factor that is often underrepresented in 
coastal-management policies and long-term urban planning2,5. In this study, we 
combine high-resolution vertical land motion (that is, raising or lowering of land)  
and elevation datasets with projections of sea-level rise to quantify the potential 
inundated areas in 32 major US coastal cities. Here we show that, even when 
considering the current coastal-defence structures, further land area of between 
1,006 and 1,389 km2 is threatened by relative sea-level rise by 2050, posing a threat to  
a population of 55,000–273,000 people and 31,000–171,000 properties. Our analysis 
shows that not accounting for spatially variable land subsidence within the cities may 
lead to inaccurate projections of expected exposure. These potential consequences 
show the scale of the adaptation challenge, which is not appreciated in most US 
coastal cities.

The widespread consequences of global climate change stress human 
communities and ecosystems worldwide. Climate change is already 
causing an increase in the frequency and intensity of heatwaves, hur-
ricanes and wildfires and severely affecting the world’s freshwater 
resources through sea-level rise (SLR), more frequent droughts and 
changes in precipitation and evapotranspiration6–8, and these effects 
will almost certainly grow in the future9. Globally, SLR will pose a sub-
stantial socioeconomic challenge in the twenty-first century, primarily 
affecting human populations, infrastructure and ecosystems along 
major coastlines10–14. Global mean sea level has risen by about 0.17 m 
over the past 100 years, with global rates of SLR accelerating from about 
1.7 mm per year in the late twentieth century to about 3.1 mm per year in 
the early twenty-first century in response to warming temperatures3,15–17 
and is 3.7 mm per year at present (ref. 17). Even if climate change mitiga-
tion efforts succeed in stabilizing temperature in the future decades, 
sea levels will continue to rise as a result of the continuing response of 
oceans to past warming3,17,18. Furthermore, coastal cities often experi-
ence sinking land (so-called land subsidence), whose compounding 
effect contributes to relative SLR, exacerbating coastal hazards and 
risks2,5,19,20. In this study, we refer to SLR that incorporates the effects 
of vertical land motion (VLM) as ‘relative SLR’, whereas ‘geocentric 
SLR’ refers to SLR without VLM. As sea level rises and land subsides, the 
hazards associated with climate extremes (for example, hurricanes and 
storm surges), shoreline erosion and inundation of low-lying coastal 
areas grow21,22.

On the coasts of the conterminous USA, climate-induced sea levels 
are rising faster than the global average3, with an expected increase 
over the next few decades (Fig. 1 and Extended Data Fig. 1). Owing 
to its geography and population distribution, the USA is a coastal 
nation, with more than 30% of its population residing in coastal cit-
ies, generating an estimated annual revenue of US$3.8 trillion (ref. 23). 

Consequently, socioeconomic losses from climate-induced SLR will 
represent a notable facet of climate-change consequences in the USA24. 
In the short term (one to three decades), only continued observed 
rises in sea level are sufficient to trigger cascading hazards across US 
coastal regions, with a projected increase in the frequency and intensity 
of storm surges, saltwater intrusion, high-tide flooding and coastal  
erosion3,12,16,25,26.

Sea levels are projected to vary minimally in the next few decades 
across the different greenhouse gas emission scenarios, whereas 
end-of-century projections indicate a more substantial divergence 
in increase by emissions (Extended Data Fig. 1b–g). Thus, short-term 
vulnerability assessments incorporating local drivers are relevant to 
policymakers for developing comprehensive adaptation strategies 
that extend beyond emission reduction, as they provide insights into 
the immediate risks and challenges of coastal communities. However, 
accurately projecting coastal vulnerability requires comprehensive 
and high-resolution measurements of VLM, which is lacking across the 
USA at present2. This lack of data makes estimating the actual risks of 
relative SLR on different coastal communities challenging and contrib-
utes to high uncertainty and potentially systematic errors in existing 
coastal-hazard assessment.

Here we present coastal-scenario-based inundation hazard models 
for coastal cities in the USA, focusing on the short-term (2050) projec-
tion of relative SLR. Our inundation models integrate high-resolution 
VLM data across the US coast27,28 (Fig. 1 and Extended Data Figs. 2–4) 
at millimetre-level accuracy using interferometric synthetic aperture 
radar (InSAR) (see Methods), the projections of geocentric SLR and 
light detection and ranging (LiDAR) digital elevation models (DEMs) 
to forecast relative SLR rates and create granular inundation maps for 
a set of major cities along the US coastline. Using the 2010 US census 
data as baseline estimates, we assess the impact of relative SLR on the 
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population and properties of US coastal communities and explore 
several adaptation regimes to minimize potential future impacts.

Future socioeconomic impact of relative SLR on US 
coasts
Future inundation of coastal areas in 32 coastal cities (see Fig. 1) 
along the US coasts is modelled using projections of current VLM 
rates on coastal-elevation data, geocentric SLR projection scenarios 
and high-tide estimates. The aggregate population of these cities is 
estimated to be 25 million people (roughly 20% of current US coastal 
inhabitants), with 10 million properties valued at US$12 trillion (Sup-
plementary Table 1). Our analysis quantifies how relative sea-level 

changes, attributable to VLM and geocentric SLR, will increase the 
exposure—area, population and properties—to high-tide flooding 
by 2050, using 2020 as the baseline (see Methods). For the analysis, 
we consider the SLR scenario derived from Shared Socioeconomic 
Pathway (SSP) scenario 2-4.5 (SSP2-4.5), representing the current 
emissions trajectory9, population and property exposure using 
the 2010 US census data and property/home value using the ZIP 
Code Zillow Home Value Index (ZHVI) (see Methods). Our model 
suggests that, by 2050, relative SLR could cause further exposed 
land area of between 1,334 and 1,813 km2 in 32 US coastal cities if no 
flood-defence structures are implemented (Figs. 2–4, Table 1 and 
Supplementary Tables 2–4). We estimate a population exposure of 
176,000–518,000 inhabitants from 94,000–288,000 properties, 
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Fig. 1 | Coastal hazards across the USA. a, Spatial distribution of VLM across 
the US coast (background image: Google, Earthstar). Positive VLM rates 
indicate uplift and negative VLM rates indicate subsidence. Individual VLM 
maps for the US Atlantic, Gulf and Pacific coasts are shown in Extended Data 
Figs. 2–4. National and state boundaries in a are based on public-domain vector 
data by the World Bank DataBank (https://data.worldbank.org/) generated in 
MATLAB. Projections of geocentric SLR with a baseline for the year 2020 based 
on SSP2-4.5 (refs. 17,34) on the Pacific coast (North Spit, Humboldt Bay, CA) (b), 
Atlantic coast (Sewell’s Point, VA) (c) and Gulf coast (Galveston II, TX) (d). The 
bold lines represent the median (50th percentile) projected geocentric SLR 
and the shaded regions represent the 17th and 83rd percentiles. e, Box plot 

representing the distribution of VLM for 32 US coastal cities evaluated in this 
study. The 32 coastal cities evaluated in this study are highlighted in a. The 
cities include: US Atlantic coast: 1. Boston, MA; 2. New York City, NY; 3. Jersey 
City, NJ; 4. Atlantic City, NJ; 5. Virginia Beach, VA; 6. Wilmington, NC; 7. Myrtle 
Beach, SC; 8. Charleston, SC; 9. Savannah, GA; 10. Jacksonville, FL; 11. Miami, FL; 
US Gulf coast: 12. Naples, FL; 13. Mobile, AL; 14. Biloxi, MS; 15. New Orleans, LA; 
16. Slidell, LA; 17. Lake Charles, LA; 18. Port Arthur, TX; 19. Texas City, TX; 20. 
Galveston, TX; 21. Freeport, TX; 22. Corpus Christi, TX; US Pacific coast: 23. 
Richmond, CA; 24. Oakland, CA; 25. San Francisco, CA; 26. South San Francisco, 
CA; 27. Foster City, CA; 28. Santa Cruz, CA; 29. Long Beach, CA; 30. Huntington 
Beach, CA; 31. Newport Beach, CA; 32. San Diego, CA.
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with a total estimated home value of US$32–109 billion by 2050. 
The maximum population and property exposure by 2050 repre-
sents approximately 1 in 50 people and 1 in 35 properties from the  
32 coastal cities.

Atlantic coast
From 11 cities on the US Atlantic coast, the projected extra area 
exposed to high-tide flooding by 2050 is between 773 and 951 km2 
(Fig. 2). This would affect a population of 59,000–263,000 people 
and 32,000–163,000 properties on the US Atlantic coast (Fig. 2 and 
Table 1). The property and population exposure on the Atlantic coast 
are not homogeneous across all cities. For example, Miami (average 
elevation of less than 2 m above sea level) has the greatest share of 
exposure, accounting for 38–44% (340–360 km2) of the exposed area, 
38–46% (22,000–122,000) of the exposed population and 41–49% 
(13,000–81,000) of the exposed properties along the Atlantic coast 
(Supplementary Table 2). The home-value exposure by 2050 for the 
11 Atlantic coastal cities is estimated at US$14–64 billion (Table 1). The 
calculated exposure does not account for the value of critical infra-
structure (such as airports, schools, hospitals, power plants, roads 
and railways), as well as economic hubs and landmarks, and hence 
represents a conservative value.

Gulf coast
For 11 cities along the US Gulf coast, our 2050 projection of inundation 
hazard shows a cumulative exposed area of between 528 and 826 km2 
(Fig. 3, Table 1 and Supplementary Table 3). These affected areas 
will expose an extra 110,000–225,000 people and 58,000–109,000 
properties worth US$14–21 billion (Table 1). It should be noted that 
substantial areas (318–426 km2), population (386,000–448,000) and 
properties (176,000–209,000) in New Orleans are already exposed to 
high-tide events at present, owing to the existence of areas lying below 
sea level (Supplementary Table 3). We emphasize that our analysis 
applies an undefended approach, which does not consider the pres-
ence of flood-control structures and future adaptation. New Orleans, 
however, is surrounded by extensive floodwalls and levee systems and 
is heavily drained. Although flood-control structures offer substan-
tial protection to coastal areas, their effectiveness is not guaranteed. 
The events following the landfall of Hurricane Katrina in August 2005, 
which claimed more than 1,500 lives, are tragic reminders of the height-
ened devastation of a failed levee system29. Thus, considerations of 
flood-control systems alone may only represent a temporary solution, 
as discussed later. Airports, roadways and refineries, ubiquitous in  
cities, are projected to be among the Gulf coast’s exposed infrastructure  
(Fig. 3).
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Fig. 2 | Inundation maps for cities on the US Atlantic coast. Areas exposed to 
current (2020) high tide and further exposed areas by 2050 considering VLM, 
geocentric SLR projection under SSP2-4.5 for: Boston, MA (a); New York City, NY 
and Jersey City, NJ (b); Atlantic City, NJ (c); Virginia Beach, VA (d); Wilmington, 
NC (e); Myrtle Beach, SC (f); Charleston, SC (g); Savannah, GA (h); Jacksonville, 
FL (i); and Miami, FL ( j). Background images in a–j are from Google, Earthstar. 

Note that, for current exposure, geocentric SLR = 0 m. The blue and red colours 
are the current and projected exposed areas, respectively. BOS, Boston Logan 
International Airport, MA; JFK, John F. Kennedy International Airport, NY.  
k, Distribution of further exposed areas, population and properties by 2050. 
The central value represents the estimated median value from equation (3), 
whereas the error bars represent the lower and upper bounds from equation (3).
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Pacific coast
On the Pacific coast, we find a considerable divergence in the impacts 
of relative SLR compared with the US Atlantic and Gulf coasts. By 2050, 
the cumulative exposed area from ten cities on the US Pacific coast is 
20–40 km2, with a population exposure of 6,000–30,000 people and 
3,000–15,000 properties worth US$4.5–22 billion (Fig. 4, Table 1 and 
Supplementary Table 4). The comparatively low inundation hazard 
may be attributable to the higher topographic elevations, lower rates 
of land subsidence and relatively low rates of geocentric SLR on the 
Pacific coast relative to the Atlantic and Gulf coasts30. Although the 
inundation hazard for Pacific coast communities (California’s coast) 
by 2050 is relatively modest, rock coast cliff retreat31 and the projected 
increase in the high-tide flooding3 are further factors that would affect 
some coastal residents and properties.

Land subsidence is a critical driver of coastal hazards
Land subsidence, the sinking or settling of the land surface, is a global 
issue with costly socioeconomic consequences4,32,33. To quantify the 
contribution of subsidence to future flooding hazards in the 32 US 
coastal cities, we consider two scenarios: (1) potential land areas below 
sea level resulting from land subsidence alone and (2) potential land 

areas below sea level resulting from a combination of land subsidence 
and sea-level change. Using linear projections of the current VLM rate 
and coastal-elevation data, we determine the land areas that, despite 
being above sea level at present, will be inundated by 2050 under 
both scenarios. Our analysis indicates that land areas below sea levels 
by 2050 resulting from only land subsidence account for 11.9–15.1% 
(Atlantic coast), 22.9–35.4% (Gulf coast) and 4.8–8.1% (Pacific coast) 
of total inundated areas when land subsidence and geocentric SLR are 
taken into consideration (Extended Data Fig. 5a–c and Supplementary 
Tables 5–7).

Furthermore, comparing our InSAR-derived VLM to geocentric 
sea-level change at Permanent Service for Mean Sea Level (PSMSL) 
tide-gauge stations included in the Intergovernmental Panel on Climate 
Change (IPCC) projections17,34 across the USA (Supplementary Fig. 1) 
reveals that, at three stations on the Gulf coast, local land subsidence 
currently outpaces geocentric SLR (considering a low-emission sce-
nario: SSP1-1.9) and presents a greater concern for the region than 
geocentric sea-level change (considering a high-emission scenario: 
SSP5-8.5) to 2045 (Extended Data Fig. 5d) and 2070 (Extended Data 
Fig. 5e,f), assuming linearly continuous subsidence. This observation is 
notable because it brings land subsidence to the fore of coastal-hazard 
discussions and highlights it as a crucial index in coastal disaster resil-
ience design20.
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Fig. 3 | Inundation maps for cities on the US Gulf coast. Areas exposed to 
current (2020) high tide and further exposed areas by 2050 considering VLM, 
geocentric SLR projection under SSP2-4.5 for: Naples, FL (a); Mobile, AL (b); 
Biloxi, MS (c); New Orleans, LA (d); Slidell, LA (e); Lake Charles, LA (f); Port 
Arthur, TX (g); Galveston and Texas City, TX (h); Freeport, TX (i); and Corpus 
Christi, TX ( j). Background images in a–j are from Google, Earthstar. Note that, 

for current exposure, geocentric SLR = 0 m. The blue and red colours are the 
current and projected exposed areas, respectively. APF, Naples Airport, FL; 
MSY, Louis Armstrong New Orleans International Airport, LA. k, Distribution of 
further exposed areas, population and properties by 2050. The central value 
represents the estimated median value from equation (3), whereas the error 
bars represent the lower and upper bounds from equation (3).
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Some flooding projections, however, do not consider the impacts 
of spatially variable land-elevation changes, resulting in inaccurate 
projections of expected exposure, which may affect the preparedness 
of coastal communities. For instance, a comparison of the estimated 
exposure by 2050 for the 32 cities derived for this study with exposure 
derived using the IPCC relative sea-level projections34 shows that the 
exposure—in terms of area, population and properties—is not distin-
guishable within uncertainty in most of the cities and broadly for the 
entire US coast (Table 1). However, we find that notable divergence in 
the exposure occurs in some cities, particularly on the US Gulf coast 
(Fig. 5a–c and Supplementary Tables 8–10). By comparing the InSAR 
VLM rates within the cities with the IPCC-derived VLM rates from 
tide-gauge records, we gain insight into the underlying differences 
(Fig. 5d and Supplementary Table 11). In cities such as Boston, New 
York City, Naples, Port Arthur, Corpus Christi, Richmond, Oakland 
and San Francisco, in which IPCC VLM rates are similar to the InSAR 
VLM rates within the city or where the contribution of VLM is minimal, 
the disparities between the estimated exposure is modest. However, 
the estimated exposure is underestimated in cities in which the IPCC 
VLM underestimates the contribution of VLM (for example, Atlantic 
City, Charleston, Savannah, Mobile and Biloxi). Similarly, in cities in 
which the IPCC VLM overestimates the contribution of VLM, the esti-
mated exposure is also overestimated (for example, Virginia Beach, 

Jacksonville, Miami, New Orleans, Slidell, Lake Charles, Port Arthur 
and Huntington Beach).

To provide a more comprehensive understanding of these underly-
ing differences, we performed a comparative analysis of InSAR-derived 
VLM rates with the VLM rates used in the IPCC Sixth Assessment 
Report34 for 74 stations along the US coast (Supplementary Table 12 
and Extended Data Fig. 6). Despite a 59% consistency in VLM measure-
ments at the tide-gauge stations across the USA, these stations—often 
situated at the peripheries of urban areas—may not accurately capture 
the contemporary dynamics of spatially variable VLM within the cities 
themselves (for example, Biloxi, New Orleans and San Diego) (com-
pare stations in Extended Data Fig. 6 with Fig. 5d). This limitation is 
particularly pertinent in urban centres in which anthropogenic driv-
ers strongly influence VLM, thereby contributing to discrepancies in 
estimated exposure. InSAR observations are the gold standard of VLM 
measurements with unprecedented spatial resolution and are useful 
to enhance the accuracy of flood-prediction models.

Climate-change inequalities
Climate change contributes to and exacerbates the fragility of the most 
vulnerable communities. Generally, disadvantaged populations are 
compelled to live in the most susceptible regions because safer areas 
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Fig. 4 | Inundation maps for cities on the US Pacific coast. Areas exposed to 
current (2020) high tide and further exposed areas by 2050 considering VLM, 
geocentric SLR projection under SSP2-4.5 for: Richmond, CA (a); Oakland, CA (b);  
San Francisco, CA (c); South San Francisco, CA (d); Foster City, CA (e); Santa Cruz, 
CA (f); Long Beach, CA (g); Huntington Beach, CA (h); Newport Beach, CA (i); 
and San Diego, CA ( j). Background images in a–j are from Google, Earthstar. 
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International Airport, CA. k, Distribution of further exposed areas, population 
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are out of reach35. A growing body of scientific literature focuses on 
the impacts of climate change on vulnerable populations across coun-
tries12,36,37. However, less emphasis has been placed on discussions on 
within-country climate-change inequality24,35. A recent report by the 
United States Environmental Protection Agency (EPA)38, along with the 
work of Hsiang et al.24, contributes to the growing body of literature 
quantifying disproportionate climate-change risks to vulnerable com-
munities in the USA.

Here we examine the disparate impacts of relative SLR on vulner-
able communities across the 32 cities in the USA, offering a nuanced 
understanding of climate inequality in the USA. To examine the racial 
disparities in the exposed communities, we focused on eight races 
defined by the US census decennial data (see Methods). Our inunda-
tion model’s analysis of the affected population by 2050 reveals dif-
ferential exposure to relative SLR along racial lines (Extended Data 
Fig. 7 and Supplementary Tables 13–15). Along the Atlantic and Pacific 
coasts, white residents are overrepresented among those exposed to 
relative SLR (Extended Data Fig. 7a,c). However, the distribution of 
white exposed population on these coasts approximately reflects the 
dominant demographic of these regions (Extended Data Fig. 7a,c and 
Supplementary Tables 13 and 15).

By contrast, on the Gulf coast, minoritized groups—individuals 
identifying as Black or African American; American Indian or Alaska 
Native; Asian; Native Hawaiian or Other Pacific Islander; Hispanic or 
Latino; and two or more groups38—constitute a noteworthy portion of 
the exposed population, despite not being the dominant population. 
Although minoritized groups make up 43.0% of the total population 
across 11 cities in the Gulf coast, they are overrepresented in the exposed 
population, accounting for more than half (50.0–57.7%) of the exposed 
population in the case of Black or African American residents alone 
and 64.2–71.5% when considering all minorities (Extended Data Fig. 7b 
and Supplementary Table 14). Asians are overrepresented among the 
exposed population on the Gulf and Pacific coasts, accounting for 2.6–
4.4% and 21.4–26.3% (median and upper bounds only) of the exposed 
population on the Gulf and Pacific coasts, respectively, despite making 
up 2.6% (Gulf coast) and 17.8% (Pacific coast) of the total population. 
Also, analysis of the impacts of relative SLR on economic inequality 
(see Methods) shows disproportionate economic exposure in New 

Orleans and Port Arthur (Extended Data Fig. 8 and Supplementary 
Tables 16–18), which runs in parallel to the increased exposure of their 
predominantly minoritized communities. The intersection of racial 
and economic inequalities highlights the multidimensional vulner-
ability that specific populations in these cities face in the context of 
relative SLR.

One contributing factor to climate-change inequity is the diminished 
capacity of minoritized/low-income groups to adapt to and recover 
from the effects of existing hazards. To accentuate this point, con-
sider the post-Hurricane Katrina impact on the population of Biloxi, 
MS. Although most attention is focused on the destruction to New 
Orleans caused by levee failures, Mississippi state incurred US$25 bil-
lion in direct storm damage and 100,000 people were displaced as 
a result of Hurricane Katrina39. East Biloxi, in which the low-income 
and marginalized community resides, was still suffering the impact 
of Hurricane Katrina 10 years after the storm, with broken, untended 
infrastructure, high unemployment rates and homelessness37. By con-
trast, the high-income communities received substantial federal aid 
for infrastructure rebuilding and are ‘better off after the storm’39. This 
exclusion from recovery aid will undoubtedly impose constraints on the 
ability of low-income and minoritized communities to adapt to future 
climate change. Consequently, marginalized groups may account for 
a disproportionate share of climate-change collateral damage, even 
if they comprise a relatively small share of the affected population. In 
simple terms, existing inequalities make already vulnerable people 
more vulnerable to the adverse impacts of climate change, resulting 
in greater projected inequality35.

Towards sustainable adaptation strategies
Human interaction with the coast is increasing across the USA10,40, and 
despite the clear and present danger posed by relative SLR, the need 
for adaptation and resilience planning is often overlooked or given 
insufficient priority. The growing risks identified in this paper pose a 
substantial challenge, and adaptation is to be expected in all the cities 
considered. Will cities be proactive and prepared through detailed 
assessment, planning and implementation of adaptive measures or 
will they be reactive to events, waiting for these impacts and risks to 

Table 1 | Modelled further exposed area, population, properties and home-value exposure for the US coasts by 2050

Coast InSAR-derived IPCC-derived

2050 further  
exposed area (km2)

2050 further 
exposed population

2050 further 
exposed properties

2050 home-value 
exposure (US$ billion)

2050 further 
exposed area (km2)

2050 further 
exposed population

2050 
further 
exposed 
properties

Atlantic a 772.5 59,276 32,986 14.0 763.9 61,715 34,803

b 871.5 100,276 60,580 25.0 871.3 96,866 58,658

c 951.1 262,926 163,533 64.0 952.6 242,139 151,597

Gulf a 536.7 110,647 58,423 14.0 663.3 203,896 99,421

b 669.7 159,776 78,609 16.0 797.6 252,320 122,039

c 827.6 225,167 109,505 21.0 924.6 286,080 142,089

Pacific a 19.8 6,478 3,038 4.5 16.4 9,989 4,547

b 29.0 12,180 5,707 9.3 28.2 13,433 6,301

c 40.2 30,798 15,110 22.0 32.3 21,034 10,749

Total a 1,329.0 176,401 94,447 32.5 1,443.6 275,600 138,771

b 1,570.2 272,232 144,896 50.3 1,697.1 362,619 186,998

c 1,818.9 518,891 288,148 107.0 1,909.5 549,253 304,435

a, b and c represent the lower bounds, median values and upper bounds evaluated using equation (3). The InSAR-derived exposure is estimated using InSAR VLM and IPCC geocentric SLR, 
whereas the IPCC-derived exposure is estimated using the IPCC relative SLR dataset17,34. See Supplementary Tables 2–4 for the InSAR-derived and Supplementary Tables 8–10 for the IPCC-derived 
exposure for each city.
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manifest? Here we will consider the proactive option. Adaptation is a 
long-term process and some combination of strategies is probably most 
appropriate sequenced following an adaptive-pathways approach41. 
The precise details will vary from place to place depending on the 
individual situation. An ideal case seems to be a combination of the 
following possibilities for coastal cities: maintenance of nature-based 
protection from marshes and mangroves; new and upgraded structural 
protection and land raising; subsidence control; and land-use planning 
to reduce vulnerability42,43.

Artificial coastal-defence structures, such as levees, berms, dykes 
and floodwalls, protect coastal communities by decreasing the con-
sequences of flooding and inundation in exposed areas44. Within the 
32 coastal cities considered in this study, there are 131 flood-control 
structures, with more than 50% protecting the cities on the Pacific coast 
(Supplementary Table 19). To demonstrate the protective capacity 
of flood-control structures on the US coast to 2050, we modelled the 
exposed areas in all cities with at least one flood-control structure, con-
sidering a defended scenario (see Methods). Extended Data Fig. 9a–e 
depicts the spatial reduction in exposed areas and properties in some 
cities with levees and floodwalls. The defended scenario suggests that, 
by 2050, relative SLR will affect a land area of 1,006–1,389 km2, 55,000–
273,000 people and 31,000–171,000 properties on the US coasts, with 
61–63% of the exposed area, 79–89% of the exposed population and 
80–89% of the exposed properties being situated on the Atlantic coast 
(Extended Data Fig. 10 and Supplementary Tables 20–22). This inef-
fectiveness in hazard mitigation on the US Atlantic coast reflects the 
lack of an adequate flood-protection system in most cities. Ten cit-
ies on the US Atlantic coast evaluated in this study (excluding Miami) 
have only three levee systems (Extended Data Fig. 10d), opting for 
other protective approaches, such as beach nourishment, enhancing 
the beach and beachfront-property aesthetics, but providing more 

limited flood protection. Nevertheless, most existing structure-based 
coastal-defence systems were not designed with climate change in 
mind, and large upgrades may be required to remain effective even to 
2050 (ref. 45). This is most relevant where subsidence and differential 
subsidence affect the use of flood-control structures by lowering their 
effective height below inundation depths and promoting structural 
failure46 (Extended Data Fig. 9f–j).

Although not universal, human-induced land subsidence must also 
be mitigated where practical. Historically, land subsidence has been a 
silent problem with little public engagement or policy-focused stud-
ies, and its complex evolution and drivers make it a ‘wicked’ policy 
problem47. Although natural processes (for example, glacial isostatic 
adjustment (GIA)) influence coastal land subsidence on the US coasts, 
non-GIA processes, including anthropogenic subsidence caused by the 
accumulation of several shallow and deep subsurface activities, such 
as drainage, groundwater withdrawal and hydrocarbon extraction, at 
present contribute to relative SLR around the USA, particularly on the 
Atlantic and Gulf coasts32,48 (Supplementary Figs. 2 and 3). Policies that 
aim to minimize subsidence (for example, through managed aquifer 
recharge) are crucial in the relevant cities19,47,49.

Although the differences between low-emission and high-emission 
scenarios in terms of exposure are relatively modest in the short term, 
these variations are not inconsequential, given the inevitable continued 
rise in sea level beyond 2050 and its likely acceleration with further 
warming9. Therefore, a long-term proactive and continuous adap-
tation beyond simple coastal protection would be needed50. For the 
sustainability and resilience of US coastal cities, it is critical to adopt 
a built-upon multifaceted strategy involving the implementation of 
adaptive measures, the regulation of subsidence and the implementa-
tion of stringent climate-change policies that keep carbon emissions 
low. More importantly, these mitigation and adaptation strategies are 

b cCities

2050 exposed area (km2) 2050 exposed population (×103) 2050 exposed properties (×103)

a

Boston
New York City

Jersey City
Atlantic City

Virginia Beach
Wilmington

Myrtle Beach
Charleston
Savannah

Jacksonville
Miami

Naples
Mobile

Biloxi
New Orleans

Slidell
Lake Charles

Port Arthur
Galveston
Texas City

Freeport
Corpus Christi

Richmond
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San Francisco
South San Francisco
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San Diego
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Fig. 5 | Comparing InSAR-derived and IPCC-derived VLM and estimated 
exposure. Differences between estimated exposure using InSAR-derived VLM 
and IPCC-derived VLM for 2050 exposed area (a), exposed population (b) and 
exposed properties (c). InSAR-derived exposure is estimated using InSAR VLM 
and IPCC geocentric SLR as detailed in Methods, whereas the IPCC-derived 
exposure is estimated using the IPCC relative SLR dataset30. The central value 
represents the estimated median value from equation (3), whereas the error 
bars represent the lower and upper bounds from equation (3). Negative  

values indicate cities in which IPCC-derived VLM exposure is overestimated,  
whereas positive values indicate areas in which exposure is underestimated.  
d, Comparison of InSAR versus IPCC VLM rates for the 32 cities. The InSAR VLM 
rates are obtained by averaging the VLM for each city used in the exposure 
analysis, whereas the IPCC VLM rates are derived from tide-gauge stations.  
The error ranges for the InSAR and IPCC VLM show ±1 standard deviation.  
A summary of the comparison of exposure and VLM rates is detailed in 
Supplementary Tables 8–11.
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driven by anthropogenic influences and within reach with concerted 
societal efforts at all levels (policymakers to citizens).
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Methods

VLM data
High-resolution VLM data are based on the Virginia Tech Earth Observa-
tion and Innovation (EOI) Lab VLM product, with spatially continuous 
coverage for the Pacific, Atlantic and Gulf coasts of the USA27,28,51–53. The 
dataset provides VLM measurements at millimetre-level accuracy and 
a resolution of about 50 m within a 100-km strip along the coasts of the 
USA. For each coast, the VLM rates were determined by integrating 
SAR images from Sentinel-1 A/B and ALOS-1 satellites between 2007 
and 2020 (see Supplementary Table 23 for satellite frames used for 
each coast) with observations of horizontal and vertical velocities 
at global navigation satellite system (GNSS) stations. To produce the 
spatially continuous surface-deformation map, InSAR line-of-sight 
(LOS) displacements were generated for the numerous SAR frames 
along the coasts.

We use GAMMA software to process SAR datasets54,55 and the 
wavelet-based InSAR (WabInSAR) algorithm to perform post-processing 
and multitemporal analysis56–60 (Supplementary Fig. 4a). To this end, 
thousands of high-quality interferograms were generated and several 
wavelet‐based analyses were applied to the interferograms to denoise 
the pixels and reduce the effects of spatially uncorrelated DEM error56,57 
and topographically correlated atmospheric phase delay57. Next, the 
velocity along the LOS direction for each pixel is calculated as the slope 
of the best-fitting line to the associated time series using a reweighted 
least-squares estimation. Last, the numerous SAR frames are mosa-
iced following Ojha et al.61 and a stochastic model, which combines 
the LOS velocities with the GNSS datasets, was adopted to generate a 
high-resolution map of the VLM rate (Supplementary Fig. 4b).

To implement the stochastic model, we resampled the LOS velocities 
of Sentinel-1 tracks onto the ALOS track and interpolated the GNSS 
velocities on the pixels within the ALOS track using a Kriging interpo-
lation technique with inverse distance weighting. Thus, we obtain 
several (5) observations per pixel for each coast, including LOS obser-
vations and GNSS velocities. Let {y0, y1,…, ym} and σ σ σ{ , , … }m0

2
1
2 2  be the 

interpolated LOS velocities and variances, respectively, for a given 
pixel, in which subscripts 0, 1,…, m indicate the available satellite obser-
vations (Sentinel-1/ALOS-1) and orbits (ascending/descending) for a 
given US coast (Atlantic/Gulf/Pacific), as defined in Supplementary 
Table 23. The stochastic model to combine the LOS velocities with the 
velocities of GNSS datasets to generate a seamless, high-resolution 
and accurate map of east (E), north (N) and vertical (U) motions is given 
by equation (1):
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in which C represents the unit vectors projecting 3D displacements 
onto the LOS, which is a function of the satellite heading and incidence 
angles, ε is the observation errors equal to the standard deviations (σ), 
E, N and U are the unknowns and EG, NG and UG are the observed inter-
polated east, north and up GNSS velocities, respectively. The solution 
to equation (1) is given by equation (2):

X A PA A PL= ( ) (2)T −1 T

in which X represents the unknowns, A is the Green’s function given by 
the unit vectors (C), L is the observation and P is the weight matrix, 
which is inversely proportional to the observant variance (σ2). The 
parameters variance-covariance matrix is Q A PA= ( )XX

r Pr
df

T −1
T

, in which 
r = L − AX and df is the degrees of freedom. The standard deviations 
(precision of the results) for each pixel on the Atlantic/Gulf/Pacific 

coasts are shown in Supplementary Fig. 5a. The spatial distribution of 
the standard deviation shows that most values are below 3 mm per year 
for the US Atlantic and Gulf coasts. However, there are a few hotspots 
of high standard deviation around the Chesapeake Bay area (US Atlan-
tic coast) and around the coast of Florida (US Gulf coast). We note higher 
estimated standard deviation values in the US Pacific coast, specifically 
in Northern California and the Orange County basin27 (Supplementary 
Fig. 5a). Generally, higher standard deviation values represent areas 
of lower precision. The observed lower precision in some pixels may 
be attributed to lower interferometric phase signal-to-noise ratio 
caused by surface vegetation, nonlinearity in the rates between the 
ALOS and Sentinel-1 observation periods owing to aquifer recharge 
and depletion, a limited number of GNSS stations used for the adjust-
ment and a comparatively higher standard deviation of the GNSS sta-
tion in the particular regions20,27,28. Furthermore, we validate the VLM 
rates using 756 GNSS stations (US Atlantic coast: 218; US Gulf coast: 
157; US Pacific coast: 381) from the Nevada Geodetic Laboratory62 and 
Shirzaei et al.48. To perform the validation, we computed the average 
InSAR VLM rates within a 200-m radius around each GNSS station for 
comparison with the corresponding GNSS vertical rates (Extended 
Data Figs. 2–4). We obtained a standard deviation of 1.5 mm per year 
and a mean difference of less than 0.3 mm per year for the US Atlantic, 
Gulf and Pacific coasts (Supplementary Fig. 5b–d).

Spatial analysis of the complied VLM map (Fig. 1 and Extended Data 
Figs. 2–4) reveals extensive coastal areas with subsidence rates of 
more than 3 mm per year. Figure 1e highlights the spatially variable 
VLM for the 32 major coastal cities selected for this study: US Atlantic 
coast: Boston, MA; New York City, NY; Jersey City, NJ; Atlantic City, NJ; 
Virginia Beach, VA; Wilmington, NC; Myrtle Beach, SC; Charleston, 
SC; Savannah, GA; Jacksonville, FL; Miami, FL; US Gulf coast: Naples, 
FL; Mobile, AL; Biloxi, MS; New Orleans, LA; Slidell, LA; Lake Charles, 
LA; Port Arthur, TX; Galveston, TX; Texas City, TX; Freeport, TX; Cor-
pus Christi, TX; US Pacific coast: Richmond, CA; Oakland, CA; San 
Francisco, CA; South San Francisco, CA; Foster City, CA; Santa Cruz, 
CA; Long Beach, CA; Huntington Beach, CA; Newport Beach, CA; San  
Diego, CA.

We find subsidence rates greater than 2 mm per year in 24 out of 32 
major cities along the US Atlantic, Gulf and Pacific coasts, with nota-
ble subsidence rates (>5 mm per year) in cities such as Charleston  
(city number 8), Biloxi (city number 14), Galveston (city number 20) 
and Corpus Christi (city number 22) (Fig. 1e). On the US Pacific coast, 
we observe lower rates of land subsidence compared with the Atlantic 
and Gulf coasts, with some cities characterized by marked uplift (such 
as Richmond: city number 23; Long Beach: city number 29; Huntington 
Beach: city number 30; and Newport Beach: city number 31).

Subsidence along the coast is driven by natural and human processes 
and is a notable contributor to relative sea-level change2,19,48,49,63–65. 
Earlier studies suggested that complex processes drive observed sub-
sidence along the US coasts27,66–69. These drivers include a combination 
of natural and anthropogenic processes, such as GIA, compaction of 
sediments, groundwater withdrawal, hydrocarbon extraction, surficial 
drainage/dewatering activities and regional tectonic activities. On 
a broad scale, disentangling the contribution of natural-driven and 
anthropogenic-driven processes is important for developing effective 
strategies to mitigate or adapt to the impacts of subsidence in low-lying 
coastal cities. On the one hand, in cities in which subsidence is a result 
of GIA and other natural processes, effective subsidence mitigation will 
probably involve an adaptive response, such as raised structures and 
infrastructure and flood-protection measures. On the other hand, for 
anthropogenic processes, proactive policy interventions and mitiga-
tion measures to reduce and control resulting subsidence, such as 
reducing groundwater and oil and gas extraction or changes in land 
use, may be helpful in sinking cities. As GIA is the main natural driver, 
we used the GIA ICE-6G-D model70 to estimate the GIA contributions 
at the SAR pixels and subtracted its effect from the observed VLM to 



assess the non-GIA contributions to the estimated VLM along US coasts 
(Supplementary Fig. 2). The relative reduction of subsidence by 46%, 
4% and 20% for the Atlantic, Gulf and Pacific coasts, respectively, 
suggests that the effect of GIA on subsidence is dominant primarily 
along the US Atlantic coast and minimal for the Gulf and Pacific coasts 
(Supplementary Fig. 2c–e). Although the median rates of subsidence 
are reduced for all 32 major coastal cities, several areas with subsid-
ence rates greater than 2 mm per year remain apparent in more than 
half of the selected cities, such as Boston, Atlantic City, Charleston, 
Biloxi, New Orleans, Texas City, San Francisco, Foster City and San Diego  
(Supplementary Fig. 3).

Coastal cities selection and elevation data
To select the 32 cities for analysis, we considered 41 major US coastal 
cities with VLM and LiDAR DEMs data. We conducted a preliminary 
analysis to determine the exposed area of each city, considering the 
IPCC localized (relative) SLR projections and mean high water (MHW) 
of the nearest tide gauge. Next, we screened the cities on the basis of 
the largest exposed area and selected ten cities from each US coastal 
region as follows: US Atlantic coast: Boston, MA; New York City, NY; 
Atlantic City, NJ; Virginia Beach, VA; Wilmington, NC; Myrtle Beach, 
SC; Charleston, SC; Savannah, GA; Jacksonville, FL; Miami, FL; US Gulf 
coast: Naples, FL; Mobile, AL; Biloxi, MS; New Orleans, LA; Slidell, LA; 
Lake Charles, LA; Port Arthur, TX; Texas City, TX; Freeport, TX; Cor-
pus Christi, TX; US Pacific coast: Richmond, CA; Oakland, CA; San 
Francisco, CA; South San Francisco, CA; Foster City, CA; Santa Cruz, 
CA; Long Beach, CA; Huntington Beach, CA; Newport Beach, CA; San  
Diego, CA.

On the Pacific coast, we focused only on future inundation hazards 
for cities in California. The absence of coastal cities from Oregon and 
Washington is a result of the lack of high-resolution VLM data for the 
US northwest coast (Fig. 1) and the complexities of future inundation 
hazards in the region driven by earthquake and tsunami hazards. The 
aftermath of earthquake and tsunami hazards can cause substantial 
subsidence followed by inundation from tsunami waves. Evaluating 
such hazards requires a probabilistic analysis of future earthquake 
and tsunami hazards beyond this study.

Also, we added two cities, Jersey City, NJ and Texas City, TX that were 
located near other selected cities (New York City, NY and Galveston, 
TX, respectively) and are also important urban centres in their respec-
tive regions.

We use LiDAR DEM for the coastal-elevation data. The high-resolution 
LiDAR DEMs hosted by the National Oceanic and Atmospheric Admin-
istration (NOAA) Office for Coastal Management are available for the 
coastal USA71. In this study, we used a 3-m × 3-m grid resolution for 
the 32 cities, except Savannah (GA), Jacksonville (FL), Miami (FL) and 
all cities on the Pacific coast, which were obtained at a 5-m × 5-m grid 
resolution (Supplementary Table 23). All DEMs for each city use the 
North American Vertical Datum of 1988 (NAVD 88) vertical datum. 
Details on the implementation, vertical and horizontal accuracy, errors 
and temporal range are available with the data download71.

Population, properties and racial demographic data
We estimate the population and property datasets for each city using 
the Topologically Integrated Geographic Encoding and Referencing 
(TIGER) system demographic and economic data records available 
from the US Census Bureau (https://www.census.gov/geographies/
mapping-files/time-series/geo/tiger-data.2010.html). The dataset 
provides population and property estimates for each city in the USA, 
subdivided into census blocks based on the 2010 census data. We used 
the 2010 dataset because it is the most recent census data available 
from the US Census Bureau. The racial demographic dataset is based on 
the decennial Census data (https://data.census.gov/cedsci/advanced) 
corresponding to the 2010 census. For this study, we selected eight 
races: ‘White’, ‘Black or African American’, ‘American Indian and Alaska 

Native’, ‘Asian’, ‘Native Hawaiian and Other Pacific Islander’, ‘Hispanic or 
Latino’ and others (‘Some Other Race’ alone and ‘Two or More Races’), 
as defined by the decennial data.

Sea-level projections
We use the localized sea-level projections from the IPCC Sixth Assess-
ment Report17,34. The projections consider the contributions to future 
sea levels from sterodynamic effects (ocean steric and ocean dynamic 
effects), ice sheets (Antarctic and Greenland ice sheets), land water 
storage, glacier and ice cap surface mass balance, thermal expansion 
and the IPCC estimates of total VLM based on tide-gauge observa-
tions—reflecting the sum of GIA and other VLM processes. To prevent 
double counting of VLM, we acquired the SLR projections without the 
effect of VLM for our analysis (geocentric SLR). The database provides 
projections of sea level at tide-gauge stations worldwide under five SSP 
scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). SSP1-1.9 
limits warming to 1.5 °C above 1850–1900 levels by 2100, implying 
net-zero CO2 emissions around the middle of the century. SSP1-2.6 
keeps warming below 2.0 °C relative to 1850–1900, with projected 
net-zero emissions in the second half of the century. The SSP2-4.5 
scenario projects best-estimate warming of approximately 2.7 °C by 
the end of the twenty-first century relative to 1850–1900. SSP3-7.0 
is a medium to high reference scenario resulting from no further cli-
mate policy with particularly high non-CO2 and aerosol emissions and 
a warming of 2.8–4.6 °C. SSP5-8.5 is a high reference scenario with the 
highest emission levels (above the current emissions trajectory) and 
warming of 3.3–5.7 °C. In this study, we apply the 17th (lower bound), 
50th (median) and 83rd (upper bound) percentile projections under 
SSP2-4.5, which represents the current emissions trajectory. Supple-
mentary Table 24 summarizes the tide-gauge stations used for the SLR 
projections in each city.

High-tide estimates
We used MHW at tide gauges to estimate the high-tide events for each 
coastal city. The tide-gauge measurements were obtained from NOAA 
tide and currents data72, using the NAVD 88 datum, consistent with 
the elevation datum and mean measurement for the present epoch. 
Tide-gauge stations used for each city were selected on the basis of the 
proximity to the city, which provides localized data crucial for accu-
rate evaluation of the current exposure to high tide in the urban areas 
(Supplementary Table 24).

Inundation model
Using a bathtub model2,51,73–75 (see Supplementary Fig. 4c), we projected 
the inundation hazards for 32 cities on the US coasts. The input data 
for the inundation model are as follows:
1.	 3-m or 5-m grid LiDAR DEM for each city.
2.	About 50-m resolution VLM data for each city.
3.	MHW levels at tide gauges adjacent to each city (Supplementary 

Table 24).
4.	IPCC geocentric SLR projections at the stations adjacent to each city 

(Supplementary Table 24).

To provide a comprehensive exposure assessment, we incorporate 
two temporal scales—the current (2020) and projected exposure 
(2050). First, the current exposure to high tide is assessed using MHW 
levels. Subsequently, projected exposure is evaluated by considering 
both VLM and geocentric SLR. Thus, the projected exposure represents 
further exposure, providing a baseline of current exposure against 
which future scenarios can be compared. To implement the inundation 
model, first, we resample the VLM rates on the LiDAR DEM. Next, we 
modify the elevation model to account for VLM projections, assuming 
a linear VLM rate from the base year of the DEM to the target years of 
2020 and 2050 (refs. 34,48,51). Last, we evaluated the current (2020) 
scenario by subtracting the modified DEM height, which accounts for 
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VLM projections up to the year 2020, from MHW levels (equation (3)). 
Subsequently, for the 2050 scenario, we apply SLR projections by sub-
tracting the modified DEM height, updated for VLM projections to the 
year 2050, from both the geocentric SLR projection height and the 
MHW levels (equation (3)). Areas with a projected height below zero 
are inundated. This simplified static model is useful for local-scale 
simulations of inundated locations hydrologically connected to the 
coast74. However, it may overestimate or underestimate inundated 
areas on the coast owing to the reduced complexity of the model74. 
To reduce the errors associated with this approach, we implemented 
connected-component analysis to remove solitary grid cells from the 
inundation model, which represents topographically isolated low 
regions. Furthermore, we first present our inundation model as an 
undefended inundation map that does not account for the presence 
of levees or sea walls and we introduce and discuss the possible impli-
cations of flood-control structures on the impacts of relative SLR. For 
the defended scenario, we account for existing levees and sea walls by 
modifying the DEM height at the location of flood-control structures 
above the threshold for potential flooding.

To account for all error sources in the input data, we consider the 
uncertainties in the DEM, VLM and SLR datasets. Specifically, we prop-
agate the 17th and 83rd percentiles for geocentric SLR projections, 
±1 standard deviation for VLM and errors inherent in the DEM (equa-
tion (3)). These measures provide an error bound for the inundation 
analysis, ensuring robust estimation of the uncertainties associated 
with the projections.

( )
(3)

t t

Inun = DEM − (SLR + MHW)

Inun = Inun

± DEM + (( − )VLM ) + ((SLR − SLR )/2)

med mod 50

low,up med

err
2

0 SD
2

83 17
2

in which Inunlow, Inunmed and Inunup represent the median, lower and 
upper bounds, respectively, for the inundation models. DEMmod is the 
modified DEM height, updated using the VLM projections. DEMerr is 
the vertical accuracy of the DEM. t represents the projection target 
years of 2020 or 2050. t0 represents the base year of the DEM. VLMSD 
is one standard deviation from the VLM data. MHW represents mean 
high water. SLR17, SLR50 and SLR83 represent the 17th, 50th and 83rd 
percentiles, respectively, from the geocentric SLR projections. Note 
that, for evaluating the current/baseline scenario (2020), SLR17, SLR50 
and SLR83 are zero.

Socioeconomic exposure analysis
We used the TIGER demographic and economic data to assess the popu-
lation and property exposure, which estimates the total population 
and properties subdivided into census blocks. We consider a census 
block inundated if greater than 20% of its area is inundated and assign 
the population and property for that block as exposed population or 
properties. To select the 20% threshold for the exposure of each census 
block, we conducted an empirical analysis across six representative 
cities. The distribution of exposed areas within these census blocks 
followed an extreme-value distribution. Statistical metrics revealed 
a median value of exposed area ranging from 18% to 23% for the six 
cities (Supplementary Fig. 6). Furthermore, the distribution exhib-
ited a sharp decline beyond 10% (Supplementary Fig. 6). Therefore, a 
20% criterion was established as a suitable threshold for quantifying 
the exposed population and properties. To quantify the home-value 
exposure, we used the ZIP Code ZHVI as a metric for housing cost. The 
estimated home-value exposure was calculated by multiplying the 
number of exposed properties within each city by the corresponding 
ZHVI (https://www.zillow.com/research/data/). We adjusted the ZHVI 
for the recent economic inflation using the mid-2021 housing price. The 
Zillow home-value data for each ZIP code used in this study is reported 
in Supplementary Table 25.

To investigate the disparate sociodemographic and socioeconomic 
impacts of relative SLR on vulnerable groups, we focused on analysing 
both racial and economic disparities in the exposed communities. To 
examine the racial disparities in the exposed communities, we consid-
ered eight races as defined by the US census decennial data: ‘White’, 
‘Black or African American’, ‘American Indian and Alaska Native’, ‘Asian’, 
‘Native Hawaiian and Other Pacific Islander’, ‘Hispanic or Latino’, ‘Some 
Other Race’ alone and ‘Two or More Races’. Racial minoritized groups 
are defined as individuals identifying as Black or African American; 
American Indian or Alaska Native; Asian; Native Hawaiian or Other 
Pacific Islander; Hispanic or Latino; and two or more groups38. The 
analysis shows an overrepresentation of the white population on 
the Atlantic and Pacific coasts, whereas minoritized populations are 
overrepresented on the Gulf coast. On the Atlantic coast, the white 
population makes up 55.1–71.4% of the exposed population by 2050, 
which is higher than their 38.3% share in the total population (Extended 
Data Fig. 7 and Supplementary Table 13). Minoritized groups make up 
43.0% of the total population on the Gulf coast while accounting for 
64.2–71.5% of the exposed population by 2050 (Extended Data Fig. 7 and 
Supplementary Table 14). On the Pacific coast, white residents comprise 
57.6–70.9% of the exposed population by 2050, despite making up only 
41.8% of the total population (Extended Data Fig. 7 and Supplementary 
Table 15). In cities such as Jersey City, New Orleans, Port Arthur and 
Oakland, minority groups are disproportionately represented among 
the exposed population (Supplementary Tables 13–15).

To assess the impacts of relative SLR on economic inequality, we used 
the property value as a proxy for economic status. Using a Kolmogo-
rov–Smirnov statistical method, we compare the median home values 
in regions exposed to relative SLR by 2050 against those in each city, 
using an alpha value of 0.05 for statistical significance. Supplementary 
Tables 16–18 summarize the statistical test for the 32 cities. Note that 
9–22 cities (considering lower to upper bound relative SLR projections) 
were excluded from the analysis because of limitations imposed by 
the central limit theorem. Across the 14 cities examined (considering 
median relative SLR projection), we find statistically significant eco-
nomic disparities in 12 cities (Extended Data Fig. 8). In eight of these 
cities, we find that the median home value for the exposed popula-
tion is higher than the total home value in the cities (that is, exposed 
properties are overvalued). However, in Atlantic City, New Orleans, 
Port Arthur and Foster City, we find that the median exposed-home 
values are lower than the overall median home value within the cities, 
highlighting their disproportionate economic exposure.

Subsidence hazard exposure analysis for levees
The polygon features for the levees across the US coasts were obtained 
from the United States Army Corps of Engineers (USACE)76. To deter-
mine the exposure to subsidence for the levees, we extracted the VLM 
rate for each point along the polygon feature. The subsidence exposure 
for levees in five cities (Miami, FL; New Orleans, LA; Port Arthur, TX; 
Freeport, TX; and Foster City, CA) are shown in Extended Data Fig. 9.

Data availability
The VLM data for the Pacific coast are available through the Virginia 
Tech Data Repository at https://doi.org/10.7294/17711000. The VLM 
data for the Atlantic coast are available through the Virginia Tech Data 
Repository at https://doi.org/10.7294/19350959. The VLM data for the 
Gulf coast are available through the Virginia Tech Repository at https://
doi.org/10.7294/22731326. The supplementary tables for this manu-
script are made accessible through the Virginia Tech Data Repository 
at https://doi.org/10.7294/24782199. The levee dataset is available from 
the United States Army Corps of Engineers (USACE) National Levee 
Database (https://levees.sec.usace.army.mil). The population and prop-
erties datasets are available from the US Census Bureau (https://www.
census.gov/). The racial demographic dataset is based on the Decennial 



Census data (https://data.census.gov/cedsci/advanced). The housing 
value is obtained from the Zillow Home Value Index (ZHVI) (https://
www.zillow.com/research/data/). The coastal elevation data are LiDAR 
digital elevation data hosted by the National Oceanic and Atmospheric 
Administration (NOAA) (Digital Coast: Data Access Viewer: https://
coast.noaa.gov/dataviewer/#/lidar/search/). The high-tide data are 
obtained from Tides and Currents: Datums from NOAA (https://tide-
sandcurrents.noaa.gov/stations.html?type=Datums). All other data 
needed to evaluate the conclusions are presented in the paper and the 
supplementary materials.

Code availability
The WabInSAR code used to perform the synthetic aperture radar 
(SAR) analysis is available at https://sites.google.com/vt.edu/eadar-lab/
software?authuser=0.
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Extended Data Fig. 1 | Current and projected SLR at selected tide-gauge 
stations across the US coasts. a, Local mean sea level measured at tide gauges 
for monthly (dashed line) and annual (solid line) time series. For clarity, the time 
series for the Pacific and Atlantic coasts have been offset by factors of +0.2 and 
+0.1, respectively. The corresponding tide-gauge locations for the projected 
sea-level change and time-series data are the green, brown and blue inverted 

triangles shown in Fig. 1a. Comparison of low-emission scenarios (SSP1-1.9) 
with high-emission scenarios (SSP5-8.5) (medium confidence) for the Atlantic 
coast Sewell’s Point, VA (b) and Charleston I, SC (c); Gulf coast Galveston Pier 21, 
TX (d) and Fort Myers, FL (e); and Pacific coast North Spit, Humboldt Bay, CA (f) 
and San Francisco, CA (g).



Extended Data Fig. 2 | Spatial distribution of VLM across the US Atlantic 
coast. Positive VLM rates indicate an uplift and negative VLM rates indicate 
subsidence. The 11 US Atlantic coastal cities evaluated in this study are 
highlighted in the figure. Background image is from Google, Earthstar.  
The vertical velocities of GNSS validation stations are shown using colour- 
coded circles on the map. Note that only a subset of the GNSS data is plotted to 
prevent cluttering. The comparison of vertical rates from 218 GNSS stations 

with InSAR rates is shown in Supplementary Fig. 11c. State codes: NH, New 
Hampshire; MA, Massachusetts; NY, New York; PA, Pennsylvania; NJ, New 
Jersey; MD, Maryland; WV, West Virginia; OH, Ohio; VA, Virginia; NC, North 
Carolina; SC, South Carolina; GA, Georgia; FL, Florida. State boundaries are 
based on public-domain vector data by the World Bank DataBank (https://data.
worldbank.org/) generated in MATLAB.



Article

Extended Data Fig. 3 | Spatial distribution of VLM across the US Gulf coast. 
Positive VLM rates indicate an uplift and negative VLM rates indicate subsidence. 
The 11 US Gulf coastal cities evaluated in this study are highlighted in the figure. 
Background image is from Google, Earthstar. The vertical velocities of GNSS 
validation stations are shown using colour-coded circles on the map. Note that 
only a subset of the GNSS data is plotted to prevent cluttering. The comparison 

of vertical rates from 157 GNSS stations with InSAR rates is shown in 
Supplementary Fig. 11d. State codes: TX, Texas; LA, Louisiana; MS, Mississippi; 
AL, Alabama; GA, Georgia; FL, Florida. National and state boundaries are  
based on public-domain vector data by the World Bank DataBank (https://data.
worldbank.org/) generated in MATLAB.



Extended Data Fig. 4 | Spatial distribution of VLM across the US Pacific 
coast. Positive VLM rates indicate an uplift and negative VLM rates indicate 
subsidence. The ten US Pacific coastal cities evaluated in this study are 
highlighted in the figure. Background image is from Google, Earthstar. The 
vertical velocities of GNSS validation stations are shown using colour-coded 
circles on the map. Note that only a subset of the GNSS data is plotted to 

prevent cluttering. The comparison of vertical rates from 381 GNSS stations 
with InSAR rates is shown in Supplementary Fig. 11b. State codes: OR, Oregon; 
CA, California; NV, Nevada. National and state boundaries are based on public- 
domain vector data by the World Bank DataBank (https://data.worldbank.org/) 
generated in MATLAB.
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Extended Data Fig. 5 | Contribution of land subsidence. Empirical 
cumulative distribution function of the total exposed area by 2050 for the US 
Atlantic coast (a), Gulf coast (b) and Pacific coast (c). The blue lines and shaded 
area show the contribution from land subsidence (LS) alone, considering linear 
projection of VLM from 2020 to 2050. The red lines and shaded area show  
the contribution from land subsidence and 2050 SLR under SSP2-4.5. The red 
lines in a–c represent the median value considering equation (3), whereas the 
shaded region is the lower and upper bounds from equation (3). The total 
exposed area for each coast are the values in a–c. Comparison of geocentric 
sea-level change from the IPCC Sixth Assessment Report17,34, with sea-level 
change resulting from land subsidence from InSAR measurements in this study 

at three tide-gauge stations on the Gulf coast: Galveston Pier 21, TX (d); Eugene 
Island, LA (e); and Grand Isle, LA (f). The solid red line shows the median  
(50th percentile) IPCC sea-level change under SSP1-1.9 (low-emission scenario), 
whereas the red shaded range shows the 17th–83rd percentile. The solid brown 
line shows the median (50th percentile) IPCC sea-level change under SSP5-8.5 
(high-emission scenario), whereas the brown shaded range shows the 17th–83rd 
percentile. The solid blue line shows the InSAR VLM from this study and the 
blue shaded ranges are one standard deviation. The black point and dashed line 
indicate when other processes exceed sea-level change from land subsidence. 
An example comparison for 20 tide-gauge stations across the US subsidence is 
shown in Supplementary Fig. 1.



Extended Data Fig. 6 | Sea-level change owing to VLM. a, Difference between 
VLM rates from the IPCC Sixth Assessment Report17,34 with VLM estimate from 
InSAR measurement at tide-gauge stations across the USA (background image: 
Google, Earthstar). National and state boundaries in a are based on public- 
domain vector data by the World Bank DataBank (https://data.worldbank.org/) 
generated in MATLAB. To obtain these rates, we averaged the VLM rates of 
InSAR pixels within a 200-m radius of the tide gauges and the standard deviation 
associated with each InSAR pixel to estimate the error ranges. A Z-test was 
initially conducted to compare the VLM rates from both sources. Stations for 
which no statistical difference was observed are marked in white, denoting 
consistent (C) VLM values. Stations for which the IPCC subsidence rates 

(negative VLM) are higher than the InSAR estimates are marked in yellow or red, 
indicating overestimation (O), whereas stations in which the IPCC subsidence 
rates are lower are marked in blue, indicating underestimation (U). Note that only 
stations with U or O are labelled in a. Summary of the VLM rates from IPCC and 
InSAR measurements and the Z-test are detailed in Supplementary Table 12. 
Statistical comparison of IPCC VLM rate versus InSAR VLM rate for the US coast 
(b), Atlantic coast (c), Gulf coast (d) and Pacific coast (e). Examples of VLM 
comparison for the Atlantic coast (Cape May, NJ) (f), Gulf coast (Freeport, TX) 
(g) and Pacific coast (San Diego, CA) (h). State codes: MA, Massachusetts; NY, 
New York; NJ, New Jersey; MD, Maryland; VA, Virginia; NC, North Carolina; SC, 
South Carolina; GA, Georgia; FL, Florida; TX, Texas; LA, Louisiana; CA, California.
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Extended Data Fig. 7 | Total population versus exposed population by 2050 
for different racial demographics on the US coast. Tree map of total and 
exposed populations for the Atlantic coast (a), Gulf coast (b) and Pacific  
coast (c). The total and exposed populations are expressed as a percentage  
of the cumulative population for the coast. The percentages for the exposed 
population represent only the median exposure values evaluated using 

equation (3). See Supplementary Tables 13–15 for the population of each city, 
including the lower and upper bounds. Minoritized groups include individuals 
identifying as Black or African American, American Indian or Alaska Native, 
Asian, Native Hawaiian or Other Pacific Islander, Hispanic or Latino, other races 
and two or more groups.



Extended Data Fig. 8 | Modelled exposed properties value by 2050 versus 
the total properties value for cities on the US coast. Box plots showing the 
distribution of total properties (TP) and exposure properties (EP) for New York 
City (a), Atlantic City (b), Virginia Beach (c), Charleston (d), Savannah (e), 
Jacksonville (f), Miami (g), Mobile (h), Biloxi (i), New Orleans ( j), Port Arthur (k), 
Galveston (l), Foster City (m) and Newport Beach (n). The y axis for TP and EP 
shows the normalized values. The values for each graph show the median, 

standard deviation and P-value for the TP and EP. The median and standard 
deviation values are expressed in thousands (k). For the t-test, the null 
hypothesis is that there is no statistical difference between the value of TP in 
the city and the value of EP. The box plots only show the median exposure 
values evaluated using equation (3). See Supplementary Tables 16–18 for the 
lower and upper bounds for each city.
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Extended Data Fig. 9 | Influence of flood-control structures on modelled 
exposure. Current (2020) and projected (2050) exposed areas considering 
defence structures for: Miami, FL (a); New Orleans, LA (b); Port Arthur, TX (c); 
Freeport, TX (d); Foster City, CA (e). The exposed areas consider VLM and  
SLR projection under SSP2-4.5. Exposure to subsidence for flood-control 

structures in: Miami, FL (f); New Orleans, LA (g); Port Arthur, TX (h); Freeport, 
TX (i); Foster City, CA ( j). The yellow lines in a–e are the levees/floodwalls. 
Background images in a–j are from Google, Earthstar. State codes: FL, Florida; 
LA, Louisiana; TX, Texas; CA, California.



Extended Data Fig. 10 | Influence of flood-control structures on modelled 
inundation. Percent decrease in 2050 exposed area (a), population (b) and 
properties (c). d, Number of levees or floodwalls in each city. Extended Data 
Fig. 9 shows the spatial maps of the defended scenario for some selected cities. 

Details about the defended scenarios for each city and the percent change are 
shown in Supplementary Tables 20–22. The central value in a–c represents the 
estimated median value from equation (3), whereas the error bars represent 
the lower and upper bounds from equation (3).


