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ARTICLE INFO ABSTRACT

Keywords: Conservation and restoration are crucial to maintaining a wide range of functions and services in wetlands, but it
Bioenergy is difficult to find a reasonable and resource-efficient management option without sacrificing ecological values.
Ethanol In the present paper, we analyse the variability and dynamics of the chemical composition and energy potential
FMIZ?]f:i:i“ meadow of biomass from reedbeds, floodplain meadows, coastal meadows and reed canary grass cultivation in extracted

peatlands. We observed that the chemical characteristics that are crucial for bioenergy production vary by
biomass origin and over time. The bioenergy potential depends on biomass production and on the conversion
method. The results indicate that the energy potential ranges from 122 to 190 GJ/ha per year in semi-natural
floodplain meadows in the boreal zone. About 160 GJ/ha per year can be obtained from natural reedbeds but
only about 120 GJ/ha per year from cultivated extracted peatlands. Using methane conversion, we can obtain
only about 50%, and using ethanol conversion we can obtain less than 20% of the total energy potential of the
herbaceous biomass of floodplain meadows. Although long-term studies on homo- and heterogeneous biomass
production are required, we conclude that the local biomass of natural, semi-natural and artificial wetlands
could contribute significantly to sustainable development.
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1. Introduction
1.1. Description of wetlands

The Ramsar Convention defines wetlands as areas of marsh, fen,
peatland or water, whether natural or artificial, permanent or tem-
porary, with water that is static or flowing and either fresh, brackish or
salt, including areas of marine water the depth of which at low tide does
not exceed 6 m [1]. Wetlands include a broad range of various natural
and artificial habitats with diverse species and plant communities, with
and without a peat layer [2-7].

The main and most important peat-forming functional plant group
with low productivity is the genus Sphagnum, which is distributed in
northern, tropical and southern-hemisphere peatlands. The common
reed (Pragmites australis) is a widely distributed (excepting Antarctica)
grass species that grows in diverse wetland types [8-10]. The reed is a
tall generalist that tolerates soils with diverse pH, salinity, fertility and
textures and usually forms dense monospecific stands as reedbeds or
reedswamps [6,7,10,11]. Another globally distributed common per-
ennial herbaceous and clonal plant species is cattail (Typha spp., family

Typhaceaea), which also forms dense stands in cattail marshes/swamps
in natural wetlands [6,7,12-14]. Sedges (Carex spp.) and rushes (Juncus
spp.) are also important and typical herbaceous plant genera in wet-
lands, where they usually take advantage of seasonal flooding, higher
groundwater levels and the nutrient content of water [15-18]. Sedges
can also form monospecific tall-sedge communities in sedge or wet
meadows [6,7,16,19]. In wetlands (e.g., the freshwater tidal zone), the
reed or tall-sedge belt is usually followed by reed canary grass (Phalaris
arundinacea), a productive and dominative cool-season grass species in
the boreal zone [7,20,21]. Such emergent plants make up the majority
of wetland flora. In keeping with the focus of this study, these plant
species can be separated into distinct groups. In grassland-production
ecology studies (also herein), the plant species are often categorised
into the following functional groups: grasses (monocotyledonous spe-
cies of the family Poaceae), sedges and rushes (monocotyledonous
species of the families Cyperaceae and Juncaceae), nitrogen-fixing le-
gumes (dicotyledonous species of the family Fabaceae) and other di-
cotyledonous broad-leaf forbs [11,16-19].
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Nomenclature

C Carbon

Ca Calcium

CH,4 Methane
C,HsOH  Ethanol

Cl Chlorine

CVv Calorific value
DM Dry matter

GJ Gigajoules, 10%J
ha Hectares

K Potassium

Kg Kilogram

Mg Magnesium

MJ Megajoules, 10°J

m> Cubic mere

N Nitrogen

P Phosphorus

pH hydrogen-ion activity (acidity or alkalinity)
PHA polyhydroxyalkanoate
S Sulfur

T Tonne

VS Volatile solids

1.2. The value of wetland ecosystems

Wetlands are important ecosystems, and many are protected at the
European level or worldwide [1,22]. They provide diverse important
functions and services [23]. Historically, wetlands have been important
as sources of food, feed supply, raw materials and medicines for human
beings; as habitats for a wide variety of flora and fauna, including en-
dangered species; as valuable freshwater/groundwater reservoirs that
improve water quality; as buffer zones for flood control or shoreline and
storm protection; for enabling nutrient exchange between alluvial se-
diments and the atmosphere; as carbon-accumulation pools; as provi-
ders of cultural values and recreational options; and for mitigation and
adaptation during climate change [2,5,6,23-28].

Over the past century, the area of natural wetlands in the world has
decreased considerably due to land-use changes (e.g., melioration,
agricultural intensification, the draining of wetlands, etc.) [23,29-35].
Human impact, leading to habitat loss and fragmentation, poses a
threat to plant species populations and causes a decline in plant species
richness [8,11,16,30,36-39]. This degradation and loss of biological
diversity will alter the functioning of ecosystems and their ability to
provide society with goods and services [23,40-43]. Therefore, it is
important to manage existing wetlands with sustainable methods to
maintain and develop these ecosystem services and functions and to
restore potential ones with the appropriate and most effective tech-
nology [6,14,31,44-49].

Much information is available on the use of grassland biomass for

diverse bioenergy options, but a review and comparison of diverse
wetland types and the suitability of their biomass for bio-based pro-
ducts is still lacking. Therefore, the current study primarily aimed to
assess and compare the composition and potential of the biomass of
diverse boreal wetland types (alluvial/floodplain meadows, coastal
meadows, reedbeds and cultivated extracted peatlands) for various
bioenergy technologies. The study proposed the following hypotheses:
(i) Biomass production differs by wetland type; (ii) the crucial char-
acteristics of wetland biomass for diverse bioenergy conversion options
vary by origin and by time of harvest; (iii) the potential for methane
production differs by the origin of wetland biomass; and (iv) energy
output will depend on the wetland type and on the energy carriers in
various conversion methods.

2. Biomass production in wetlands
2.1. Biomass production of diverse wetland and abiotic factors

Wetlands are ecosystems with a very wide range of yields, reaching
a maximum of up to about 40 t/ha for swamps and marshes [3,7,50].
Actual biomass production is subject to various abiotic conditions re-
lated mainly to geographical latitude parameters and the availability of
water and nutrients in the substrate [7,51,52]. It has been demon-
strated that the functional traits of common reed (Phragmites australis)
production vary across the geographic gradient [53] In the boreal zone,
the common reed produces up to 10t/ha [11,54,55], but in warmer

Table 1
Description of different wetlands based on disturbance level (natural, semi-natural and artificial) and their biomass yield (t/ha).

No Type Country Dominant species Management Yield References

1 Coastal meadow Estonia Phragmites australis Natural, no management 6.5 [11]

2 Tall sedge swamp Germany Carex acutiformis, Natural, no management 6.7 [51]
Cirsium arvense etc.

3 Reedbed/swamp Estonia Phragmites australis Natural, no management 8.6 [54]

4 Reedbed/swamp Sweden Phragmites australis Natural, no management 10.0 [55]

5 Floodplain meadow Estonia Carex acuta Natural, no management 11.2 [16]

6 Floodplain meadow Estonia Filipendula ulmaria Natural, no management 12.8 [16]

7 Brackish tidal marsh USA Phragmites australis Natural, no management 18.6 [56]

8 Floodplain meadow USA Carex aquatilis, Natural, previous grazing, live + dead biomass 22.4 [52]
Carex utriculata etc.

9 Reedbed/swamp China Phragmites australis Natural, experimental harvest in January 33.4 [57]

10 Floodplain meadow USA Carex aquatilis, Natural, previous grazing, live + dead biomass 43.1 [52]
Carex utriculata

11 Reedbed/swamp Egypt Phragmites australis Natural, no management, polluted lake 53.9 [58]

12 Coastal meadow Estonia Elytrigia repens, Semi-natural, grazing 3.1 [11]
Festuca rubra etc.

13 Wet meadow Germany Holcus lanatus, Semi-natural, one (in July/August) or two cuts, no fertilisation 4.1 [51]
Cynosurus cristatus,

14 Floodplain meadow Estonia Phalaris arundinaceae, Semi-natural, harvest in July, no fertilisation 6.6 [17,18,106]
Filipendula ulmaria etc.

15 Floodplain meadow Estonia Carex acuta Semi-natural, harvest in July, no fertilisation 9.4 [16]

16 Floodplain meadow Estonia Filipendula ulmaria Semi-natural, harvest in July, no fertilisation 10.3 [16]

17 Extracted peatland Estonia Phalaris arundinaceae Artificial, cultivated with fertilisation, harvest in October, 7.2 [64]

18 Rewetted peatland Italy Phragmites australis Artificial, restoration, revegetation, former drained agricultural land 49.4 [66]
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climates up to more than 50 t/ha can be achieved [56-58], (Table 1). A
similar trend can be observed in sedge-dominated floodplain meadows
(e.g. [16,52]). In addition to temperature, the local water table and
nutrient availability are important parameters in determining biomass
production [59-61]. For example, the high yield of water-tolerant plant
species growing in river-bank or delta areas typically leads to eu-
trophication and a consequent accumulation of nutrients.

2.2. Biomass production of various wetland species and types

The production of herbaceous biomass from wetland varies by
wetland type and also by the dominant plant species (Table 1).
Aboveground biomass production from 2.5 to 3.5 t/ha was observed in
alkaline mires dominated by small sedges [62]. In swamps, biomass
production was found to vary from 5 to 40t/ha depending on the
dominant species (reed, bulrush or cattail) [7]. In general, the average
herbaceous biomass production in wetlands was 12.3 t/ha for cattail
(Typha spp.), 17.6 t/ha for common reed (Phragmites spp.), 27.9 t/ha for
giant cane (Arundo donax) and 43.0t/ha for papyrus sedge (Cyperus
papyrus) [63]. In Estonian climatic conditions, natural reedbeds domi-
nated by the common reed produced almost 9.0 t/ha [54], (Table 1).
This yield was lower than that of Estonian natural floodplain meadows
dominated by slender tufted-sedge (Carex acuta) or by meadowsweet
(Filipendula ulmaria) (11.2 and 12.8t/ha [16], respectively). The last
two species communities are among the most productive in boreal
floodplain meadows. The yield of these floodplain meadows was higher
than that from Estonian extracted peatland cultivated with reed canary
grass (8.2t/ha), even though that was the only area in our study that
was supplied with additional fertilisers and harvested at the end of the
growing season [64]. A similarly low yield of 6-7 t/ha for this species
has also been modelled for boreal zone soils with N > 0.6% [65]. In
extracted peatlands, the revegetation yield may be controlled by both
the water table and by nutrient availability (e.g. [66]), and a more
productive species or species communities well adapted to wetland
conditions should be considered after restoration in order to increase
the biomass yield.

2.3. Management and problems with harvesting

Wetland management regimes may be intensive (e.g., drained
peatland for peat excavation, seasonally flooded meliorated polders,
drained wet meadows for intensive agriculture, etc.), extensive (e.g.,
semi-natural coastal or salt marsh grasslands, alluvial/flooded wet
meadows, sedge meadows managed extensively by mowing and/or
grazing, etc.) or without management (e.g., natural swamps dominated
by cattail or common reed, active Sphagnum acid bogs, etc.).

Mowing or grazing is a traditional and extensive anthropogenic
intervention to keep wetlands open for biodiversity purposes

Table 2
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[2,3,6,67]. It has been assumed that grazing better supports the con-
servation value of various semi-natural wet grasslands than does
mowing [68], but in some cases grazing has been reported to degrade
fen wetlands beyond recovery [69]. Mowing, on the other hand, has
been supposed to develop plant species’ richness and to create wetland
specialist habitats [70,71]. For specific habitat creation, it is sometimes
important to organise, in addition to a periodic large-area harvest, a
network of small meadow patches to preserve the characteristic plant
species [72]. In order to conserve habitat-specific bird species in
reedbeds and sedge-dominated meadows, reed cutting and mowing are
obligatory, at least in a mosaic pattern [46,73].

In the boreal zone, floodplain meadows typically reach maximum
biomass production in July [18], but artificial peatland cultivated by
reed canary grass reaches its maximum at the end of the growing season
[64]. In practice, wet soil conditions may hamper access by heavy
equipment while harvesting, so the management of wet meadows with
traditional agri-technology requires extra effort and additional energy
input [17,74-76]. In some cases, it is suggested to harvest the biomass
of reed canary grass cultivated in extracted peatlands in the following
spring in order to eliminate unwanted elements in the biomass and to
benefit from the frozen ground (e.g., [77,78]), but this practice may
result in a drastic loss of biomass [64,79]. Even a specially constructed
harvester (e.g., a redesigned alpine snow-grooming machine) may ne-
gatively affect habitat-specific species and soil chemistry in sedge-
dominated wetlands [62]. Finding a proper harvesting technique is one
of the most serious challenges in wetland management, and therefore a
holistic approach based on both ecosystem-services provisions and
specific harvesting techniques, logistics and infrastructure is required
[80-82].

3. Wetland herbaceous biomass characteristics
3.1. Chemical composition of biomass from various wetlands

Many studies have demonstrated that the composition of herbac-
eous biomass depends upon its origin [83-85]. The main challenge in
converting herbaceous biomass to bioenergy is the great variability of
its chemical composition [17,86-88]. For instance, lignocellulosic
compounds do not easily biodegrade under anaerobic conditions, and
therefore a low biogas yield can be expected [89,90]. A high con-
centration of lignin in biomass (the critical level is 100 g lignin per kg
volatile solids) is considered to inhibit its methane potential [89].
Therefore, a large content of easily biodegradable compounds in bio-
mass (e.g., proteins, hemicellulose) is favoured for methane production
via anaerobic digestion. It has been shown that the feedstock-specific
methane yield of herbaceous biomass correlates to its protein content
[91], but, on the other hand, extremely large amounts of protein or N in
feedstock may form ammonium, thus inhibiting methane production

Composition of biomass (%DM) in different wetlands (numbering and references according to Table 1) and functional groups (G — grasses (Poaceae); S&R — sedges
(Cyperaceae) and rushes (Juncaceae); L — legumes (Fabaceae); OF — other dicotyledonous broad-leaved forbs (data modified from [17,18,86,106]).

Parameters 1 2 3 5 6 12 13 14 15 16 17 G S&R L OF

Cellulose 29.5 32.2 29.7 23.9 23.9
Hemicellulose 22.8 24.7 30.8 121 7.4

Lignin 8.9 6.1 5.6 10.2 11.3
Crude protein 9.4 8.1 6.3 10.0 11.9 10.6 8.1 9.5 9.4 10.0 6.0 8.4 9.5 17.1 10.5
Ash 7.9 7.2 6.2 7.0 5.4 5.9 6.5

C 42.3 46.5 425 44.7 47.4 44.0 44.8 45.8 45.1
N 1.5 1.3 1.0 1.6 1.9 1.7 1.3 1.5 1.5 1.6 0.96 1.3 1.5 2.7 1.7

P 0.05 0.20 0.25 0.05 0.16 0.20 0.24 0.14 0.12 0.16 0.17
K 1.53 1.59 1.0 1.01 1.31 1.55 0.81 1.5 1.09 1.25 1.05 1.07 0.89 1.40
Ca 0.25 0.76 0.61 1.24 0.30 0.99 0.77 0.65 1.09 0.32 0.60 1.33 1.14
Mg 0.36 0.26 0.24 0.35 0.46 0.45 0.19 0.27 0.32 0.14 0.17 0.34 0.42
Cl 0.74 0.40 0.22 0.14 0.19 0.18 0.13 0.15 0.12
S 0.25 0.20 0.27 0.18 0.17 0.21 0.22 0.18 0.18
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Fig. 1. Dynamics of biomass composition in common reed (Phragmites australis)
collected from floodplain meadow from May 2016 to April 2017.

[92]. In general, the cellulose and hemicellulose content in grasses,
sedges and rushes is greater than that in legumes and other forbs, while
for lignin and protein content the situation is reversed (Table 2). A si-
milar trend has been observed in other studies [83]. High grass or
sedges/rushes content in feedstock has been found to produce a higher
sugar content, which is more easily digestible than forbs-rich feedstock,
resulting in higher saccharification yields [93]. This assumption was
also confirmed for the South American wetland sedge (Schoenoplectus
californicus, spp. Totora), which was presumed to be a promising co-
substrate for biogas production [94]. In another study, however, a high
ratio of sedges and rushes in biomass was deemed less suitable for
biogas production than the biomass from other grasslands [88].
Therefore, the suggestion of any particular functional group as a me-
thane production substrate solely on the basis of its chemical compo-
sition is complicated, as the dicotyledonous plant species with a high
protein concentration also have higher lignin amounts. The effective-
ness of wetland biomass for methane potential is analysed in section
4.2.

If direct combustion is chosen as the energy conversion method,
other criteria for substrate quality become important. As a rule, a higher
heating value is considered to correlate with a higher C concentration
[95], as each extra 1% of mineral ash is assumed to decrease the
heating value by 0.2MJ/kg [96]. Our comparison revealed a high C
concentration in the biomass of common reed reedbeds and in reed
canary grass from late harvest monoculture (Table 2). Relatively higher
ash concentrations (> 7% DM) have been measured in biomasses har-
vested from wet meadows or tall-sedge swamps. In another study from
a floodplain meadow, a somewhat lower ash content in sedges and
rushes was detected (5.4% DM). Therefore, it can be assumed that the
ash content of a functional group may vary according to particular
kinds of wetland-management regime. Increased ash and alkali metal
content can both result in slagging, corrosion and fouling of a boiler
that is not dedicated to herbaceous biomass burning [97]. In our da-
tabase, the highest K and Mg concentrations among functional groups
were achieved from the group of other forbs. This functional group is
probably more common in coastal meadows and floodplain meadows
than in reedbeds or wet meadows, causing slight differences in element
concentrations by wetland type. The highest Ca concentration among
the functional groups was found in legumes, but the small ratio of this
group in various wetlands probably veiled its impact, and the greatest
concentration of Ca was detected in floodplain meadows dominated by
meadowsweet. P concentration in all our investigated functional groups
was lower than that in most wetland types. This phenomenon can be
explained by local differences in alluvial sediments; P is a common
element in waterbodies under eutrophication, and therefore its uptake
potential and concentration reflect pollution in the local environment
[98-100]. In general, dicotyledonous species had higher concentrations

296

Renewable and Sustainable Energy Reviews 111 (2019) 293-302

of alkali metals than monocotyledonous species, and this ratio should
be controlled when designing suitable combustion technology for
wetland biomass.

One crucial factor in direct combustion is the chemical composition
of emission gases. To diminish problems with NO, and SO, emissions, N
and S concentrations should be less than 6 g/kg-DM and 2 g/kg-DM,
respectively [101]. The corrosion of the combustion system by the gases
can be prevented if the raw material contains less than 1 g S and Cl per
kg-DM. The critical level for N was exceeded in all the biomasses in our
database, and that for S and Cl in tall sedge swamps, wet meadows and
reedbeds (see Table 2). Again, it is necessary to point out the impact of
the study site, as S availability may vary due to the characteristics of the
growth substrate (e.g. [102]). Conversely to alkaline metals, Cl and S
concentrations are higher in monocotyledonous than in dicotyledonous
species, and that pattern should be kept in mind when changing the raw
material for a herbaceous biomass boiler to avoid an additional risk of
environmental pollution.

3.2. Changes in chemical composition during the vegetation period

Changes in the composition of herbaceous biomass have been re-
ported by various studies [18,51,64,83]. In our study, the seasonal
dynamics of organic compounds were demonstrated on the basis of
biomass from the common reed collected in a floodplain meadow
(composition of biomass was analysed according to [103]); the cellu-
lose and lignin concentrations increased, and the hemicellulose and
crude protein concentrations decreased in the course of biomass aging
(Fig. 1). At the beginning of the vegetation period, both protein and
cellulose concentrations were about 30%, and the hemicellulose and
lignin concentrations were about 40% and 3%, respectively. At the end
of vegetation period (October), both the protein and hemicellulose
concentrations had decreased (to 9.0% and 30%, respectively), while
those of cellulose and lignin increased (to 35% and 6%, respectively).
During the dormancy period, an additional decline in protein content
and an increase in cell wall components was observed. A similar trend
during the vegetation period has been reported through grass maturity
stages [104].

Harvesting herbaceous biomass at the end of the vegetation period
should be considered [18,51] to decrease the content of the minerals
crucial in combustion that are mentioned in section 3.1. In the current
study about biomass of common reed (chemical characteristics of bio-
mass were analysed based on [103]), the most drastic declines during
the vegetation period were observed for K and P (from 4% to =1% and
from 0.55% to 0.15%, respectively) (Fig. 1). Similar negative trends
were detected for Ca and Mg. All these elements also continued to
decrease in the biomass throughout the dormancy period. In reed
canary grass, a decrease in N, Cl and S during biomass aging has been
reported, followed by an ash content decrease and a C ratio increase
[64].

The calorific value of common reed biomass ranged from about
17.0 MJ/kg to more than 18.0 MJ/kg (calorific value based on oven-
dried biomass combusted in bomb calorimeter (e2K, Digital Data
Systems (Pty) Ltd, South Africa)), with a tendency to increase during
biomass aging (Fig. 2). The same pattern of calorific value growth (from
16.7 MJ/kg in summer to 17.2 MJ/kg the following spring) was also
detected in reed canary grass biomass [64]. Typical calorific values for
perennial energy grasses (Phalaris arundinacea, Panicum virgatum and
Miscanthus spp.) varied from 16.6 to 17.6 MJ/kg, respectively [78].

4. Sustainability for bioenergy purposes
4.1. Wetland energy potential
Traditionally, biomass from wetlands has been used for diverse

purposes including food, construction material and fodder [6,105].
Recently, herbaceous biomass has drawn more attention because of its
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Fig. 2. Dynamics of chemical elements and experimental calorific value in
biomass of common reed (Phragmites australis) collected from floodplain
meadow from May 2016 to April 2017. Column with horizontal stripes re-
present potassium, white column phosphorus, column with diagonal stripes
calcium and black column magnesium; black cross represents calorific value.

bioenergy potential [86,87,106-111]. The energy potential per area
depends mainly on biomass production [87,106,108,109,112,113].

Judging by the dry biomass production (Table 1) and calorific va-
lues (18.6 MJ/kg [54] for 1, 3 and 12; 18.4 MJ/kg [106] for 5, 6 and
14-16; 16.9 MJ/kg [64] for 17), the highest energy potential can be
achieved from natural wetlands (Fig. 3): floodplain meadows domi-
nated by meadowsweet or tall sedge (Carex acuta) (236 GJ/ha and
206 GJ/ha, respectively), followed by reedbeds and coastal meadows
dominated by the common reed (160 GJ/ha and 121 GJ/ha, respec-
tively). Wetland management decreases its energy potential. The
highest energy potential among seminatural wetlands can be obtained
from floodplain meadows dominated by meadowsweet or tall sedge
(190 GJ/ha and 173 GJ/ha, respectively). Boreal floodplain meadows
had an average energy potential of around 122 GJ/ha. This value is
similar to the energy potential of reed canary grass cultivated in ex-
tracted peatlands. According to the literature, the energy potential of
the studied wetlands is comparable to the energy yield from various
biomass sources (wheat, switchgrass, Miscanthus sp., poplar and
willow) [114]. Therefore, these can be good bioenergy sources without
additional fertiliser input or a change in land use that diminishes bio-
diversity. Assuming the energy-conversion efficiency via combustion
(to produce heat) to be only 85% [115], we would obtain 104-162 GJ/
ha from floodplain meadows, 136 GJ/ha from reedbeds and 104 GJ/ha
from cultivated extracted peatlands. Usually, the energy input for
harvesting in paddy fields is assumed to be about 1 GJ ha-1 [116], but
according to other authors, grassland management requires a total
energy input in the range of 4-10 GJ/ha [117-119]. Even in the case of
the highest assumed energy input of 10 GJ/ha for management, we
could obtain from 94 to 152 GJ/ha of net heat energy from floodplain
meadows, 126 GJ/ha from reedbeds and 94 GJ/ha from cultivated ex-
tracted peatlands in the boreal zone.

4.2. Wetland biomass conversion to biofuel

In the current study, the average cumulative methane yield of
herbaceous biomass varied across functional groups and over time
(Fig. 4). In the first week, higher methane yields were observed in le-
gumes and other forbs groups. Such rapid progress was most likely
supported by higher N and P content in the legumes and other forbs.
The mineralisation process of both these elements may promote the
microbial biomass growth and acetate metabolism that accelerate me-
thane production [86,120,121]. At the end of the experiment, the me-
thane potential was higher in sedges and rushes (0.40 m® CH,/kg-VS),
followed by grasses (0.32m> CH,/kg-VS), legumes (0.30 m® CH,/kg-
VS) and other forbs (0.24 m® CH,4/kg-VS). For total biomass collected
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from floodplain meadow, the methane potential was 0.27 m® CH,/kg-
VS. The higher methane potential from grasses and sedges/rushes than
from legumes and other forbs is confirmed by the results of other stu-
dies [122,123] The methane potential of various functional groups was
in the same range as the methane potential of some grass species (Poa
pratensis, Poa abbreviata, Phalaris arundinacea, Phragmites australis) and
other forbs (Aegopodium podagraria, Helianthus salicifolius, Matricaria
chamomilla, Taraxacum spp.) or energy crops that were harvested in
summer [89,123-125]. It was observed that the biogas potential of
Phragmites australis depends on the time of harvest [126]. Generally,
differences in methane potential are explained by a feedstock’s che-
mical composition and by its varying indigestible fraction of organic
fibres or degree of cellulose crystallinity [89,127]. Quite often, selected
pre-treatment techniques that remove the indigestible fraction from the
biomass may enhance the digestibility of the biogas substrate and thus
increase methane production [123,128].

According to our calculations, 122GJ/ha can potentially be
achieved from floodplain meadows in terms of heat (see section 4.1). If
we consider the same biomass production (No 14 in Table 1), achieved
methane potential (total biomass in Fig. 4) and assume a CH,4 calorific
value of 39.7 MJ/m®, we can produce only 65 GJ/ha, which is almost
50% less through heat production via direct combustion (Fig. 5). For
hemp, the ratio between biomass energy yield and methane-produced
energy yield has been reported as 47% [129]. According to another
study, only 25-30% of energy can be converted to methane in the
biomass from various semi-natural areas in Belgium [130]. For the
area-specific ethanol energy yield of the same biomass (14 in Table 1),
we used the experimental ethanol production ratio of 115.7 g/kg-DM
[131] and the calorific value of ethanol of 29.7 MJ/kg. Based on these
assumptions, the floodplain energy yield in terms of ethanol was 23 GJ/
ha, or about 20% of that from direct combustion. A much lower energy
yield via ethanol production compared to methane production was also
achieved from Zea mays and Vicia faba cultivated in the boreal zone
[132]. One possible solution for increasing the efficiency of both biogas
and ethanol production is pre-treatment of the substrates [128,133].
Without a proper pre-treatment that efficiently destroys (hydrolyses)
the cellulose of a herbaceous substrate [134,135], ethanol production
from wetland biomass cannot be suggested. On the other hand, its
chemical composition may be more profitable for other biorefinery
options.

4.3. Biorefinery
The concept of a biorefinery integrates processes and technologies

for the resource-efficient use of all lignocellulosic biomass components
in order to convert such material into high-value-added products
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Fig. 3. Energy potential in different boreal wetlands (numbering according to
Table 1) according to disturbance level (gray column - natural; white column -
semi-natural; black column - artificial). Energy potential based on calculation of
dry biomass yield and calorific value (18.6 MJ/kg [54] for 1, 3 and 12;
18.4MJ/kg [106] for 5, 6 and14-16; 16.9 MJ/kg [64] for 17).
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[133,136-138]. Biorefining is driven by global environmental chal-
lenges and the demands of a future bioeconomy [139-141]. The sus-
tainable production of energy, fuels, organic chemicals and polymers
from biomass in an integrated biorefinery approach is required to de-
crease dependence on fossil resources and address energy and material
crises [142-145]. The development of biorefinery systems could pro-
mote the efficiency of wetland biomass use and protect the environment
(e.g. [87,109,146,147]). Within the arena of biorefinery, bioenergy
(bioheat and biopower, gaseous and liquid biofuels) is most probably a
high-volume, low-value product, but the conceptual vision of bior-
efinery embraces much more ambitious plans for diverse bioproducts
[139]. One approach involves the depolymerisation of lignocellulosic
material to produce eco-friendly biodegradable PHAs that can replace
fossil-fuel-based plastic (e.g. [148,149]). Wetland biomass could also
replace forest harvesting for paper production [150]. Some wetland
plant species have also drawn attention for medicinal production (e.g.
Filipendula ulmaria or Carex spp. in [151-154]).

4.4. Socioeconomic impact

The rapid growth and high density of the root systems of typical
wetland species have inspired engineers to design specially constructed
wetland systems [155]. Such tailor-made constructions may have a
broad variety of functions; for example, they could be used to treat the
effluent of municipal sewage, to filter runoff from a collection of captive
wildfowl, to neutralise the acidic drainage water from mines, to buffer
sensitive areas downstream from intensively managed agricultural
fields and to protect a drinking water reservoir from the impact of
traffic (e.g., [156-158]). According to the constructed wetland’s
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function, the water would flow on the wetland surface or subsurface
[155]. In both cases, the water-tolerant wetland plant species promote
treatment processes via direct element uptake and metabolism. More-
over, the roots of these plants mediate oxygen transfer to the rhizo-
sphere and therefore increase the aerobic degradation of organic ma-
terials together with an expected nitrification [159]. It has been shown
that the concentration of trace metals in the common reed and reed
canary grass growing in constructed wetlands did not exceed that in the
same species in natural wetlands [157]. Therefore, the biomass from
constructed wetlands may also be counted as a potential raw material
for bio-based products. Moreover, more intense exploitation of the
biomass originating from small-scale, alternative, eco-friendly pur-
ification facilities promotes the idea of sustainable development and
improves quality of life, supporting the promise of an agroecological
lifestyle [63,108].

Another reason to increase wetland area is to restore previously
managed peatland areas. Without a good management plan, the top
layer in these areas experiences continuous mineralisation due to the
decreased water table. The consequent greenhouse gas emission should
be avoided through the wet cultivation in peatlands of previously se-
lected potential crops [85,160,161]. Such paludiculture systems, if
planted with natural, high-yielding plant species under a reasonable
and efficient management plan, would constitute an additional agroe-
cological approach to meet both nature-conservation and bio-economy
goals.

4.5. Ecological impact

The importance of wetland restoration is also manifested in large-
scale natural-habitat conservation programs organised at the local-au-
thority level in response to the demands of local residents [162]. Cy-
press swamps and wetlands in Palm Beach County, Florida, provide
local habitats with protected surface water, ensure groundwater quality
and quantity, create conservation greenways and wildlife corridors and
provide opportunities for recreation through hiking and bird watching.
Through careful planning, these goals can be achieved in cooperation
with habitat conservation. Due to seasonal intensive flooding and lack
of terrestrial access, floodplain meadows may serve as an excellent
refuge for migrating birds and may decrease their damage in farmers’
fields [163]. Moreover, being less disturbed than conventional agri-
cultural areas, they promote the nesting of farmland birds, whose
nesting period should be considered in wetland biomass harvest plans
[164,165]. It has been shown that some bird species are sensitive to
changes in the flooding regime [166]. At the same time, it may be
necessary to maintain a high-water table in wetlands for some endemic
plant species (e.g., Senecio fontanicola [167]), and large-scale drainage
can degrade the habitat for characteristic species (e.g., Carex spp.
[168]). Continuing habitat fragmentation or destruction may lead to
the extinction of wetland specialists (e.g., Swertia perennis [169]).
Therefore, a careful inventory of local biodiversity through the seasons
should be undertaken before making drastic changes in wetland man-
agement plans. A careful approach based on broad-scale background
information guarantees an optimal design that serves sustainable de-
velopment goals.

5. Conclusions

® Biomass production in natural and semi-natural floodplain meadows
is higher than in cultivated extracted peatlands in the boreal zone.
Sedges (Carex spp.), meadowsweet (Filipendula ulmaria) or the
common reed (Phragmites australis) should be favoured in wetlands
if a high biomass yield is required.

Summer biomass from wetlands contains minerals unwanted for
combustion, but a reasoned choice of harvest time decreases the
concentration of these crucial elements.

e The high hemicellulose and low lignin content of sedges and rushes
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and their larger proportion in total biomass may enhance methane
production.

The highest theoretical energy potential was achieved from flood-
plain meadows, followed by reedbeds. Based on various conversion
options, we conclude that ca. 50% of theoretical potential was
captured in methane, while the ethanol production efficiency was
20%.

Improved knowledge of wetlands biomass production with sustain-
able management options is needed to promote the development of
other bio-based products to diversify and enhance local bioec-
onomy.
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