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depends strongly on the levels of inequality and income. Thus there is a ‘double dividend’
to improvements in distribution (Bourguignon, 2003) and substantial heterogeneity in the
estimated poverty (semi-)elasticities across time and space – an issue to which we return
shortly.

Perhaps the most striking fact about all three specifications is how well they fit. For
more intuitive comparisons, the last row shows the square root of the mean squared
residual for each model – a model metric suggested by Wooldridge (2010a). Already in
the first model, we predict the observed poverty headcount for each country-year with
about three and a half percentage points accuracy and with better than two and a half
percentage points accuracy in the preferred specification. This truly reflects an identity
relationship. A simple pseudo-R2 measure of the correlation between the observed and
fitted values for models (1) to (3) suggests near perfect fit (R2 > 0.99). Figure 1
illustrates this point and shows the shape of the estimated effects. Using our preferred
specification, we plot both the observed headcount and the predicted headcount over
the range of observed mean income or expenditures (left panel) and inequality (right
panel). The quality of the non-linear approach is readily apparent as the fit is very close
at either bound (near unity or near zero) and the model does not predict nonsensical
values. Further, the variation in the observed values is completely covered by the model
predictions. In linear models, neither of these two outcomes is guaranteed.

Figure 1 – Data versus fitted values, preferred specification, 2$ a day

For comparison, Table B-2 in Appendix B reproduces the linear approach of the previous
literature using the data in levels and the poverty spell data in differences. The differences
in the estimated average elasticities are not large, as is typical for comparisons between
linear and non-linear approaches. We do not discuss these results in detail since they
suffer from the expected problems (see Section 2). First, when switching from fixed
effects to annualized differences in the simple models with only income and inequality,
measurement error increases and attenuates the income coefficient. Second, the models
with interaction terms do not fit nearly as well as those reported earlier and many
coefficients are insignificant. Third, the two-step GMM results for the interaction models
are unstable and not able to convincingly solve the problem of measurement error. The
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last model, which is in the spirit of the preferred specification of Kalwij and Verschoor
(2007), even implies a negative Gini elasticity and all coefficients are estimated with great
imprecision. In sum, these models do not perform well in comparison to their fractional
response counterparts and are thus unlikely to produce reliable estimates over a wide
range of circumstances.

Conversely, the strength of the fractional response approach lies in its ability to deliver
much more precise estimates of effects other than the overall mean. Table 3 and Table 4
illustrate this point by estimating the income elasticities and Gini elasticities over different
time periods for the six geographic regions in our sample. They are computed according
to eq. (14) by plugging in the different time period and region specific means of income
(ln ȳit) and inequality (lnGit), and then averaging over the entire sample population. The
standard errors of the elasticities are computed via a panel bootstrap and thus account for
the uncertainty of the first stage. We present regional and temporal elasticities here but
also provide estimates for the semi-elasticities in Table B-3 and Table B-4 in Appendix B
for comparison.

Table 3 – Predicted regional income elasticities, preferred specification, 2$ a day

Time period
1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

East Asia and Pacific -0.991 -1.029 -1.237 -1.139 -1.578
(0.030) (0.033) (0.055) (0.043) (0.101)

Eastern Europe and Central Asia -4.358 -2.892 -2.700 -2.846 -3.304
(0.555) (0.309) (0.277) (0.304) (0.384)

Latin America and Caribbean -2.284 -2.374 -2.425 -2.349 -2.985
(0.243) (0.257) (0.271) (0.258) (0.366)

Middle East and North Africa -2.176 -2.116 -2.024 -1.966 -2.501
(0.203) (0.188) (0.168) (0.161) (0.246)

South Asia -0.548 -0.629 -0.810 -1.024 -1.192
(0.053) (0.048) (0.030) (0.032) (0.046)

Sub-Saharan Africa -0.831 -0.437 -0.436 -0.592 -0.632
(0.027) (0.039) (0.040) (0.035) (0.033)

Notes: Standard errors obtained via a panel bootstrap using 999 replications. The predicted
elasticities are based on estimated APEs at each region/time-period mean of ln ȳit and lnGit.

There is considerable regional and temporal heterogeneity in the estimated income
elasticities. However, its origins are very mechanical. As the theoretical derivations
in Section 2 show and our estimates make clear, the income elasticity is an increasing
function of income. In other words, regional heterogeneity of the income elasticity is
mainly due to income heterogeneity. More affluent regions (Eastern Europe and Central
Asia, Latin America and the Caribbean, and the Middle East and North Africa) have
higher income elasticities than poorer regions (East Asia and Pacific, South Asia and Sub-
Saharan Africa). Income dynamics over time are also clearly visible. In Eastern Europe
and Central Asia, for example, income is comparatively high before the post-communist
transition, sharply collapses throughout the 1990s and then recovers during the 2000s.
Compared to earlier results (e.g. Kalwij and Verschoor, 2007), we find markedly higher
average income elasticities in more affluent regions and lower elasticities in poorer regions.
Throughout Table 3, the standard errors are small compared to the point estimates and
remain very accurate for regions with more extreme values (e.g. very low income and
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above average inequality in Sub-Saharan Africa in the 1980s).
Table B-3 in Appendix B presents the region and time specific income semi-elasticities

of poverty. There the picture is reversed. Comparatively more affluent regions have less
people near the poverty line, and thus the poverty reduction potential from a one percent
increase in incomes is much smaller in terms of the population lifted out of poverty.
This dynamic is again best visible in Eastern Europe and Central Asia, where absolute
poverty at the 2$ a day poverty line is almost non-existent just before the post-communist
transition and then rises sharply in the 1990s as incomes decline. Correspondingly, the
semi-elasticity is close to zero in the 1980s but then it increases as more people fall
into poverty. Likewise, the biggest poverty reduction potential in 2005-2010 was in East
Asia, South Asia and Sub-Saharan Africa. This highlights an important point. For
development policy, we really care more about poverty reduction in terms of the percent of
the population lifted out of poverty rather than relative changes in the poverty headcount.
Hence, semi-elasticities are the pertinent concept (see also Klasen and Misselhorn, 2008).

Table 4 – Predicted regional Gini elasticities, preferred specification, 2$ a day

Time period
1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

East Asia and Pacific 0.732 0.760 0.914 0.841 1.165
(0.105) (0.101) (0.113) (0.108) (0.144)

Eastern Europe and Central Asia 3.219 2.136 1.994 2.102 2.440
(0.510) (0.307) (0.283) (0.296) (0.353)

Latin America and Caribbean 1.687 1.753 1.791 1.735 2.205
(0.186) (0.198) (0.199) (0.189) (0.269)

Middle East and North Africa 1.607 1.563 1.495 1.452 1.847
(0.197) (0.198) (0.196) (0.185) (0.253)

South Asia 0.405 0.464 0.598 0.756 0.880
(0.093) (0.097) (0.095) (0.107) (0.127)

Sub-Saharan Africa 0.614 0.322 0.322 0.437 0.467
(0.087) (0.055) (0.060) (0.066) (0.069)

Notes: Standard errors obtained via a panel bootstrap using 999 replications. The predicted
elasticities are based on estimated APEs at each region/time-period mean of ln ȳit and lnGit.

The region and time specific Gini elasticities in Table 4 show where the potential of
redistributive policies in terms of proportionate reductions in the poverty headcount was
largest over the last three decades. Unsurprisingly, these regions are Eastern Europe and
Central Asia, Latin America and the Caribbean, and the Middle East and North Africa
– all of which have above average inequality. Sub-Saharan Africa starts out with high
inequality in the 1980s23 but incomes are very low relative to the poverty line, so that the
Gini elasticity is small. This is the flip side of the dependency on initial levels: countries
can be so poor and unequal that the immediate effects of equalization and income growth
on relative changes in the poverty headcount are comparatively small. However, here too,
the semi-elasticities presented in Table B-4 in the Appendix help to clarify the picture.
There the relative position of poorer and richer countries is reversed. The potential for
reducing poverty through redistribution in terms of percent of the population that is poor
was larger in poorer regions throughout the entire period from 1981 to 2010.

23The population-weighted mean Gini in the 1980s is 0.4608.
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The ‘double dividend’ of reductions in inequality is illustrated in Figure 2 by graphing
the estimated poverty elasticities or semi-elasticities over different combinations of income
and inequality. Again, we compute these estimates according to eq. (14) by plugging in the
different values for mean income or expenditures (ln ȳit) and inequality (lnGit), and then
averaging over the entire sample. As Figure 2a illustrates, on top of the direct poverty
alleviating effect of income redistribution towards the poor, a lower level of inequality
also raises the income elasticity in absolute value at every point. However, the magnitude
of both elasticities is steeply increasing in the level of income; that is, the return to either
income growth or equalization is bigger, the higher the income level. This may invite
the conclusion that growth matters more at lower levels of income, while redistribution
is only important for high income and high inequality countries. This, precisely, is the
misleading feature of relative changes.

Figure 2 – Predicted income and Gini elasticities and semi-elasticities of poverty, 2$ a day
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Figure 2b shows the predicted income and Gini semi-elasticities of poverty. The picture
is very different and in many ways more intuitive. If the shortfall is too large – the mass
of the income distribution is too far to the left of the poverty line – then both the income
and the Gini semi-elasticities approach zero. However, if the country is very affluent –
the mass of the income distribution is far to the right of the poverty line – then both
semi-elasticities also approach zero. In between those two extremes, improvements in the
income distribution can make a very large difference in terms of percent of the population
lifted out of poverty, both, directly through redistribution and indirectly through growth.
At ȳt/z = 1, for example, a Gini of 0.25 implies that one percent income growth leads to a
0.584 percentage point reduction in the poverty headcount and a Gini of 0.55 implies that
one percent income growth leads to a 0.378 percentage point reduction in the poverty
headcount. Especially at very low average income levels the initial income distribution is
decisive. It practically determines whether there is any substantial potential for poverty
alleviation through income growth at all (in terms of percent of the population that
is poor). Moreover, as the Gini semi-elasticity also depends on the level of inequality,
further improvements in the income distribution will have a larger effect on poverty
reduction at lower levels of inequality. Contrary to Figure 2a, this suggests that poverty
reduction strategies should focus both on income growth and equalization, especially
in least developed countries and high inequality countries where the total returns to
redistribution are large. Again, for policy questions, these relationships are much more
pertinent than relative changes in the poverty headcount.

Could the decomposition be improved by allowing for other “more ultimate”
determinants of poverty? If the assumption of log normality is justified, mean income
and the Gini fully describe the distribution of incomes and expenditures, and there is
logically no scope for other variables to enter. Yet this assumption is restrictive and
we deliberately do not rely on log normality. In fact, we expect it to be violated at
least for some cases (see, e.g., the host of alternative distributions analyzed by Bresson,
2009). More realistic distributions usually have more than one shape parameter to better
capture skewness, long tails or the existence of multiple modes. “Ultimate factors” could
thus be proxies for systematic deviations from equiproportional shifts in the distribution
of incomes and expenditures. Weak institutions, for example, may explain the fact that
the rich receive more of the gains. Table B-6 in Appendix B extends the heteroskedastic
fractional probit models with data on institutions, human capital, access to credit and
trade openness. The APEs of income and inequality are not affected by the inclusion of
additional covariates and the APEs of other determinants are virtually zero. Thus we
conclude that with only two variables, several dummies and correlated random effects,
these specifications are essentially saturated. The fractional response approach leaves
little room for misspecification of the decomposition.

While the literature on poverty reduction has produced mixed results so far, it is
largely consistent with this view. Prominent examples are two studies by Dollar and
Kraay (2002, 2004), who find that trade, inflation and other factors influence the incomes
of the poorest quintile, while several other variables do not. However, they emphasize
that these effects run predominantly through growth of GDP per capita. The interesting
link is between some factor X and income or inequality, not between X and a measure of
poverty. Usually such a “first stage” relationship has a dedicated literature that explicitly
attempts to resolve causality issues and provides an appropriate theoretical background.
Thus if we are interested in the effects of, say, institutions on poverty it is not only
sufficient but, in our opinion, much more relevant to investigate the effects of institutions
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on income (e.g. see Acemoglu et al., 2001; Acemoglu and Johnson, 2005) and inequality
(e.g. see Engerman and Sokoloff, 1997; Easterly, 2007). Separating these two estimation
steps is important, as the impacts of income and distributional changes themselves depend
on the initial levels of income and inequality.

4.2 Projecting poverty

Parts of the previous literature highlight that estimates of income and inequality
elasticities or semi-elasticities are particularly useful for poverty simulations (e.g. Klasen
and Misselhorn, 2008) and hence model fit is very important. Fractional response models
provide a new, powerful and simple method of predicting poverty.

To illustrate the appeal and accuracy of this approach, we compare the predictions
of our model for 2010 to the official World Bank data and then extrapolate poverty
well into the medium-term future until 2030. Clearly, this is a hypothetical exercise
and is not intended to replace any official estimates by the World Bank or national
authorities. Rather it allows us to make somewhat more sophisticated predictions than
back-of-the-envelope trend extrapolations and can provide a useful benchmark for setting
global poverty reduction goals. Using fractional response models for this purpose has the
added advantage that we can predict poverty responses to any combination of shifts in
mean income and inequality. Further, these models have the attractive feature that the
implied changes in the elasticities of poverty at different income and inequality levels are
automatically taken into account.

In fact, even the official World Bank regional poverty figures involve a considerable
amount of interpolation and extrapolation since most household surveys are not
undertaken annually (for details see Chen and Ravallion, 2004). The basic steps are as
follows. The World Bank first calculates poverty in the given survey year by fitting Lorenz
curves to either the unit-level or grouped-level data. Then, average real household income
is lined up to a reference year by interpolating between surveys or extrapolating with the
growth rate of personal consumption expenditures per capita (PCEit). Afterwards, the
poverty headcount is recalculated using the new income level and the same Lorenz curve
as before. If two surveys are available, one before and one after the reference year, the
poverty headcount is a weighted average of the two estimates for the reference year.

Our method is similar in spirit. We proceed in four steps. First, we extrapolate the
last available survey income to 2010 using actually observed country growth rates in PCE
from the WDI, or PWT if the former is missing. Inequality is kept constant at the latest
observed value. Second, we project mean income into the future using each country’s
average growth rate of PCE over the last 15 years. We assume that growth is distribution
neutral, which is in line with the absence of any significant correlation between changes
in inequality and income growth (see Figure B-4 in the Appendix). Third, we predict the
poverty headcount in 5-year intervals from 2010 to 2030 using our preferred specification
without adjusting for measurement error in income (Model 2 in Table 2).24 We typically
do not need estimates of the measurement errors in income or inequality for forecasting
purposes, but we implicitly assume that their contribution remains stable over time.
Finally, the world total and the regional aggregates are estimated as population-weighted
averages of our country level estimates using population data from the World Population

24Note that although our preferred specification is only estimated on the sub-sample where Ti ≥ 2,
we can use the model estimates to predict poverty for the entire sample (Ti ≥ 1). We only lack estimates
of the panel size effects for Ti = 1, so we assign these observations to the adjacent group (Ti = 2).
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Prospects. We do not provide standard errors for the point estimates since these are
subject to fundamental uncertainty in the assumed PCE growth rates.

Table 5 shows the results and Table B-5 in Appendix B provides regional PCE
growth rates highlighting the assumptions behind these forecasts. The comparison of
the official World Bank poverty figures and our estimates in 2010 illustrates that our
approach produces meaningful results. For three regions, our estimates are within a
percentage point of the official figures, for another two regions, they are within less than
2.5 percentage points, and only for East Asia and Pacific, we estimate a much lower
poverty level in 2010. Our results closely match the World Bank’s results for the world
total. Using the World Bank population data, our estimates imply 2,383.43 million
people under the 2$ line worldwide in 2010 versus 2,395.21 million as reported by the
World Bank.

Table 5 – Poverty projections (Ĥit × 100), preferred specification, 2$ a day

2010 2010 2015 2020 2025 2030
Official Estimate Estimate Estimate Estimate Estimate

East Asia & Pacific 29.73 26.70 16.80 10.53 6.92 4.86
Europe & Central Asia 2.35 2.98 1.88 1.17 0.73 0.46
Latin America & the Caribbean 10.37 10.62 8.96 7.59 6.46 5.52
Middle East & North Africa 12.04 14.57 11.36 8.86 6.92 5.41
South Asia 66.71 68.36 57.50 46.09 35.29 26.06
Sub-Saharan Africa 69.87 69.02 64.74 60.73 57.20 54.02

World Total 40.67 40.47 33.64 28.01 23.55 20.09

Notes: Regional aggregates are based on the World Bank classification of low and middle income
countries in 1990. High income countries in 1990 are assumed to have no poor. The projections are
for 123 countries. West Bank and Gaza is excluded as we lack both PCE and population data.

The anticipated regional trends from 2010 to 2030 are highlighted in Figure 3. The left
panel shows the regional poverty rates and the right panel plots the regional distribution of
the poor population. Given past growth trajectories, poverty in Sub-Saharan Africa and
South Asia remains the fundamental development challenge of the twenty-first century.
Estimated poverty in Sub-Saharan Africa is very high in 2010 (69.02%) and projected
to remain high through 2030 (54.02%) on the entire subcontinent in spite of sustained
income growth (about 2.3% p.a.). In South Asia, too, poverty is equally high in 2010
(68.36%) but projected to fall by more than half (to 26.06% in 2030). By 2030, about
half of the world’s poor will live in Sub-Saharan Africa, followed closely by South Asia.

Poverty in the East Asia and Pacific region, on the contrary, largely takes care of itself
if incomes and consumption expenditures keep growing at the impressive rates of the last
15 years. We project poverty in East Asia (4.86%) to be below poverty levels in Latin
America (5.52%) by 2030, and second only to Eastern Europe and Central Asia where
absolute poverty virtually disappears (down to 0.46%). Most of the progress in East Asia
is due to rapid income and expenditure growth in China. However, this prediction may
not hold if a middle-income slow-down occurs in China as some observers suggest (see,
e.g., Eichengreen, Park, and Shin, 2013).

Progress in Latin America and the Caribbean, and the Middle East and North Africa
is noticeably slower in spite of the assumption of robust yet moderate income growth
(about 2.2% and 2.9% p.a., respectively) and comparatively large income elasticities.
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Figure 3 – Predicted regional poverty, 2$ a day, 2010 to 2030
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Notes: Regional aggregates are based on the World Bank classification of low and middle income
countries in 1990. High income countries in 1990 are assumed to have no poor. The projections
are for 123 countries. West Bank and Gaza is excluded as we lack both PCE and population data.
Population data is the medium fertility variant from the World Population Prospects.

This suggests that the countries in these regions should reinforce their poverty alleviation
efforts. However, for the Middle East and North Africa these numbers could be too
optimistic given the recent social upheavals and volatile economic growth that ensued.

Part of this pattern follows directly from the process of “bunching up above 1.25$ a
day and just below 2$ a day” occurring in East Asia and, to a lesser extent, in South Asia
over the last two decades (Chen and Ravallion, 2010). These two regions have a relatively
large population near the poverty line and hence most of the advances are projected to
occur there. Latin America and the Caribbean, as well as the Middle East and North
Africa, are richer and require stronger income growth to continuously reduce poverty.
Sub-Saharan Africa, on the other hand, has a considerable proportion of the population
far below the 2$ a day line in 2010 (with 48.47% poor at 1.25$ a day). It is facing a lower
income elasticity and thus requires exceptionally strong income growth to make significant
strides against poverty. As highlighted in the previous section, this heterogeneity in the
income elasticity is mainly due to income differences.

We repeat the same exercise for the 1.25$ a day poverty line. Table B-8 and Figure B-
5 in Appendix B show the results based on the estimates presented in Table B-7. The
performance of our method is similar and, when compared to the World Bank approach,
is just slightly less accurate for the 2010 baseline. The broad patterns are also similar but
start from much lower poverty levels. It is worth noting that the gap between Sub-Saharan
Africa and South Asia is even wider for extreme poverty. All regions are predicted to
have a poverty headcount below 7% in 2030, except Sub-Saharan Africa where we project
poverty levels to remain at about 35%. In 2030, it is likely that the great majority of the
world’s extremely poor population will live on the Sub-Saharan subcontinent.

What do these results imply for the post-2015 development agenda? We suggest that
a new goal to at least halve the 2$ a day poverty level within 20 years should be the
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bare minimum if we want to ensure steady progress. It could be combined with a more
ambitious goal for extreme poverty (1.25$ a day) and significant resources targeted at
Sub-Saharan Africa and South Asia. Shifting the policy focus to a higher poverty line
makes a lot of sense. For most of the developing world the 1.25$ a day poverty line will
become nearly irrelevant. In fact, as long as incomes continue to grow, any absolute
poverty measure will become less relevant over time when it is set too low and 2$ a day
can hardly be described as generous. China, for example, recently updated its national
poverty line from less than 1$ a day to about 1.80$ a day. Raising the headline poverty
threshold ensures the goal remains relevant as time passes.

Even the lower bound of this poverty reduction goal would not necessarily be self-
fulling. A lasting slump in the developed world coupled with the possibility of China
entering a middle-income trap could make it a challenge to preserve historical income
growth rates throughout the medium-term future. In addition, income growth does not
need to be distribution-neutral and anti-poverty policies will be more successful if they
are accompanied by an improving income distribution. In any case, we now have a
baseline to calculate goals against and to asses counterfactual assumptions. This can
inform discussions on the post-2015 development agenda and help to identify reasonable
benchmarks.

5 Conclusion

In this paper we derive a new approach to decomposing the poverty headcount and
show that this fractional response approach outperforms earlier linear approximations.
Our main point is that the well-established non-linearity of the income and inequality
elasticities of poverty arises primarily from the bounded nature of the poverty headcount.
Once this inherent non-linearity is taken into account, we can derive an empirical
approximation of the poverty decomposition that implies income and inequality (semi-)
elasticities with desirable properties.

We use this new approach to estimate income and inequality (semi-)elasticities of
poverty based on a large new data set. Fractional response models fit the data extremely
well. We provide evidence that the average income elasticity is around two and the
average inequality elasticity is about one and a half. However, since these two averages
are not very informative, we show that differences in income and inequality levels create
strong regional heterogeneity in the estimated elasticities and semi-elasticities. Studies
based on linear approximations do not fully capture this heterogeneity. Compared to
earlier results, our approach provides estimates that are often substantially different,
very stable and considerably more accurate. This holds for a wide range of different
combinations of income and inequality. While our approach restricts the nature of
the unobserved heterogeneity (measurement differences), it requires no distributional
assumptions other than a correctly specified conditional mean. In addition, we show that
classical measurement error in income attenuates the elasticity estimates and outweighs
systematic survey bias pointing in the opposite direction.

Functional form matters a lot when estimating poverty decompositions. Elasticities
and semi-elasticities of poverty estimated with fractional response models have properties
closely resembling those of their theoretical counterparts derived under the assumption of
log normality. Moreover, we emphasize that semi-elasticities rather than elasticities are
the policy relevant metric. This non-linearity also has direct implications for a reduced-
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form literature interested in the poverty effects of more ultimate determinants or more
policy-oriented variables. The focus should be first on how a particular variable of interest
leads to changes in mean incomes and changes in distribution and, only in a second step,
on how these changes bring about different poverty outcomes. Only in this manner, the
non-linearity of the poverty-income-inequality relationship is properly taken into account.

To further illustrate the potential of the fractional response approach, we provide
poverty projections from 2010 until 2030 based on the simple assumption that average
historical consumption growth continues into the medium-term future. We show that the
regional landscape of poverty is likely to change dramatically over the next two decades.
Two findings stand out in particular. First, poverty in Sub-Saharan Africa and South
Asia will remain the overarching challenge in the twenty-first century. Second, in all other
regions poverty is projected to fall rapidly, so that there is a strong rationale for setting
the post-2015 development goals on the basis of the 2$ a day poverty line.

It is tempting to interpret our findings as evidence of the primacy of growth. Yet, we
are by no means arguing that income growth is all that matters for poverty reduction.
It is important to emphasize that the causal effect of any particular policy on aggregate
household income and the relative distribution of income cannot be discerned from a
decomposition exercise such as this. What it does is help to identify how a given change
in average income or in distribution translates into poverty outcomes, and not how that
change is brought about. Hence, the importance of institutions, trade and a host of
other factors for poverty alleviation remains undiminished. There is a potentially large
‘double dividend’ to be reaped if growth can be achieved in combination with simultaneous
reductions in inequality.

Other important questions remain open. More work is needed on identifying viable
paths of poverty alleviation that actually combine redistribution with growth. Such
analyses require a more sophisticated political economy of redistribution and poverty than
currently available. In addition, the issue of statistical discrepancies between expenditure
surveys, national accounts and consumption proxies, and what these discrepancies imply
for the confidence we place into poverty estimates, is just beginning to be explored. In
our view, these are exciting areas for future research.
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Appendix A

Let the poverty line (z) be fixed and assume the poverty headcount is described by a
two-parameter distribution, so that H(ȳt/z, σt) = H(ȳt, σt) = Ht. A Taylor linearization
of H(·) about (ȳt, σt) gives

H(ȳt + dȳt, σt + dσt) = H(ȳt, σt) +
∂Ht

∂ȳt
dȳt +

∂Ht

∂σt
dσt + ξt (A-1)

where dx denotes a differential change in x, and ξt is a second-order remainder. This is
easily extended to allow for a vector of Lorenz curve parameters as in Kakwani (1993).

Subtracting H(ȳt, σt) from both sides, dropping the remainder by approximation,
dividing through by Ht (provided Ht > 0), and multiplying the first (second) term by
ȳt/ȳt (σt/σt), we arrive at eq. (4) from the main text:

dHt

Ht

≈
(
∂Ht

∂ȳt

ȳt
Ht

)
dȳt
ȳt

+

(
∂Ht

∂σt

σt
Ht

)
dσt
σt

= εHȳt
dȳt
ȳt

+ εHσt
dσt
σt
. (A-2)

If we do not divide by Ht, we get a decomposition of the (non-relative) change of poverty
in terms of income and inequality semi-elasticities (as in Klasen and Misselhorn, 2008).

Similar steps starting from H(ȳt, Gt) lead to a decomposition in terms of mean income
and Gini. Using the chain rule for elasticities, an expression for the Gini elasticity is

εHGt = εHσt

(
dGt

dσt

σt
Gt

)−1

(A-3)

enabling us to write

dHt

Ht

≈ εHȳt
dȳt
ȳt

+ εHGt
dGt

Gt

= εHȳt
dȳt
ȳt

+ εHσt

(
dGt

dσt

σt
Gt

)−1
dGt

Gt

(A-4)

where eqs. (2) and (3) give εHȳt and εHσt under log normality, but we still need an
expression for dGt/dσt to get an explicit formula for εHGt .

Even though we restricted our attention to one inequality parameter, the results thus
far are quite general. Now if we also assume log normality, we arrive at an explicit form
for the Gini elasticity. Using σt =

√
2Φ−1(Gt/2 + 1/2), we have

dGt

dσt
=

d[2Φ
(
σt/
√

2
)
− 1]

dσt
=
√

2φ

(
σt√

2

)
. (A-5)

Inverting and substituting eq. (A-5) together with eq. (3) from the main text into
eq. (A-3) gives the Gini elasticity

εHGt =

(
ln(ȳt/z)

σt
+

1

2
σt

)(
σt
Gt

√
2φ

(
σt√

2

))−1

λ

(− ln(ȳt/z)

σt
+

1

2
σt

)
(A-6)

where σt =
√

2Φ−1(Gt/2 + 1/2). This result corrects for the missing σt/Gt in Kalwij
and Verschoor (2007, p. 824). The Gini semi-elasticity (ηHGt ) is just eq. (A-6) with φ(·)
replacing λ(·). Clearly, both the Gini elasticity and the Gini semi-elasticity are highly
non-linear functions, as illustrated in Figure 2.
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Appendix B

Figure B-1 – Transformed headcount (2$ a day) and log mean income, by region
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Figure B-2 – Transformed headcount (2$ a day) and log Gini, by region
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Table B-1 – Summary statistics by region (unweighted)

Variable Mean Standard Deviation Min Max
East Asia and Pacific (N=80)

Hit – Headcount (2$) 0.502 0.267 0.023 0.978
Git – Gini coefficient 0.392 0.058 0.275 0.509
ȳit – Mean income or expenditure 107.86 78.39 25.02 399.76

Eastern Europe and Central Asia (N=254)
Hit – Headcount (2$) 0.110 0.169 0.000 0.857
Git – Gini coefficient 0.330 0.056 0.210 0.537
ȳit – Mean income or expenditure 251.99 136.11 37.66 766.78

Latin America and Caribbean (N=274)
Hit – Headcount (2$) 0.204 0.122 0.002 0.775
Git – Gini coefficient 0.523 0.054 0.344 0.633
ȳit – Mean income or expenditure 246.63 90.55 55.53 671.04

Middle East and North Africa (N=37)
Hit – Headcount (2$) 0.166 0.111 0.003 0.466
Git – Gini coefficient 0.380 0.042 0.301 0.474
ȳit – Mean income or expenditure 165.26 56.59 84.02 306.33

South Asia (N=35)
Hit – Headcount (2$) 0.672 0.226 0.122 0.936
Git – Gini coefficient 0.343 0.067 0.259 0.627
ȳit – Mean income or expenditure 67.78 39.20 30.71 204.98

Sub-Saharan Africa (N=129)
Hit – Headcount (2$) 0.708 0.202 0.018 0.985
Git – Gini coefficient 0.453 0.087 0.289 0.743
ȳit – Mean income or expenditure 67.62 54.04 14.93 465.80

Notes: Mean income or expenditure in $ per month. 809 observations, 124 countries in total,
unbalanced sample from 1981 to 2010.

List B-1 – Included countries (number of surveys)

Albania (5), Algeria (2), Angola (2), Argentina (21), Armenia (11), Azerbaijan (3), Bangladesh (8),
Belarus (14), Belize (7), Benin (1), Bhutan (2), Bolivia, Plurinational State of (11), Bosnia and
Herzegovina (3), Botswana (2), Brazil (26), Bulgaria (7), Burkina Faso (4), Burundi (3), Cambodia (5),
Cameroon (3), Cape Verde (1), Central African Rep. (3), Chad (1), Chile (10), China (16), Colombia
(14), Comoros (1), Congo, Dem. Rep. of (1), Congo, Rep. of (1), Costa Rica (23), Cote D’Ivoire
(9), Croatia (7), Czech Rep. (2), Djibouti (1), Dominican Rep. (16), Ecuador (12), Egypt (5), El
Salvador (14), Estonia (9), Ethiopia (4), Fiji (2), Gabon (1), Gambia (2), Georgia (14), Ghana (5),
Guatemala (8), Guinea (4), Guinea-Bissau (2), Guyana (2), Haiti (1), Honduras (20), Hungary (10),
India (5), Indonesia (13), Iran, Islamic Rep. of (5), Iraq (1), Jamaica (7), Jordan (7), Kazakhstan
(11), Kenya (4), Kyrgyzstan (10), Lao People’s Dem. Rep. (4), Latvia (11), Lesotho (4), Liberia
(1), Lithuania (9), Macedonia, Rep. of (10), Madagascar (6), Malawi (3), Malaysia (9), Maldives
(2), Mali (4), Mauritania (6), Mexico (11), Micronesia, Federated States of (1), Moldova, Rep. of
(15), Montenegro (4), Morocco (5), Mozambique (3), Namibia (2), Nepal (4), Nicaragua (4), Niger
(4), Nigeria (5), Pakistan (8), Palestinian Territory, Occupied (2), Panama (13), Papua New Guinea
(1), Paraguay (14), Peru (16), Philippines (9), Poland (18), Romania (15), Russian Federation (13),
Rwanda (3), Saint Lucia (1), Sao Tome and Principe (1), Senegal (4), Serbia (9), Seychelles (1),
Sierra Leone (1), Slovakia (7), Slovenia (6), South Africa (5), Sri Lanka (6), Sudan (1), Suriname (1),
Swaziland (3), Syrian Arab Rep. (1), Tajikistan (5), Tanzania, United Rep. of (3), Thailand (14),
Timor-Leste (2), Togo (1), Trinidad and Tobago (2), Tunisia (6), Turkey (11), Turkmenistan (3), Uganda
(7), Ukraine (13), Uruguay (7), Venezuela, Bolivarian Rep. of (13), Vietnam (6), Yemen (2), Zambia (7).
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Figure B-3 – Partial regression plot – first stage
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Notes: The figure plots two residual series, so that the plotted slope is identical to the slope of

lnPCEPit in the first stage. On the x-axis: ˜lnPCEPit = lnPCEPit − x′1itβ̂1 −
∑T
r=1 δTi,rϕ̂1r −∑T

r=1 δTi,rx̄
′
iθ̂1r. On the y-axis: l̃n ȳit = ln ȳit − x′1itβ̂1 −

∑T
r=1 δTi,rϕ̂1r −

∑T
r=1 δTi,rx̄

′
iθ̂1r. In both

cases, x′1it includes only the log of Gini but x̄′i contains the time averages of lnGit and lnPCEPit .
Both regressions also contain survey type and time dummies, as well as their time averages.

Figure B-4 – Inequality changes and income growth, 1981–2010
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Table B-2 – Linear models – Dependent variable: lnHit, 2$ a day

OLS Two-Step GMM
(1) (2) (3) (4) (5) (6)

Within Differences Differences Differences Differences Differences
R+C ’97 R+C ’97 Bourg. ’03 R+C ’97 Bourg. ’03 K+V ’07

∆ ln ȳit -1.895 -0.268 -2.028 2.046 -0.362
(0.170) (0.617) (0.271) (1.043) (3.216)

∆ ln ȳit × lnGi,t−1 1.108 3.445 2.097
(0.671) (1.192) (2.315)

∆ ln ȳit × ln(ȳi,t−1/z) -0.552 -0.995 -0.517
(0.179) (0.258) (0.785)

∆ lnGit 2.336 -0.527 1.664 1.257 -8.222
(0.311) (1.449) (1.008) (4.127) (11.185)

∆ lnGit × lnGi,t−1 -1.769 -1.416 -8.164
(1.586) (3.929) (8.296)

∆ lnGit×ln(ȳi,t−1/z) 1.261 -0.315 -1.382
(0.427) (1.172) (1.996)

ln ȳit -2.114
(0.204)

lnGit 3.024
(0.409)

lnGi,t−1 -0.129
(0.134)

ln(ȳi,t−1/z) -0.023

¯̂εHȳ -2.114 -1.895 -1.755 -2.028 -1.905 -2.684
¯̂εHG 3.024 2.336 2.201 1.664 2.206 -2.345

N × T̄ 648 648 648 641 641 641
N 104 104 104 102 102 102
Hansen’s J (p-val.) – – – 0.0418 0.579 0.639

Notes: All standard errors are robust to clustering at the country-level. The GMM results
are estimated using two-step efficient GMM. Model (4) uses as instruments ∆PCEit, PCEi,t−1,
ln ȳi,t−1 and lnGi,t−1. Model (5) uses as instruments ∆PCEit, PCEi,t−1, ∆PCEit × lnGi,t−1,
∆PCEit× ln(ȳi,t−1/z), ln ȳi,t−1, ln ȳi,t−1× lnGi,t−1, ln ȳi,t−1× ln(ȳi,t−1/z), lnGi,t−1 and lnGi,t−1×
lnGi,t−1. Model (6) uses the same instruments as model (5) but ln ȳi,t−1 and lnGi,t−1 instrument
for themselves. All models include a constant (not shown) and model (1) includes a time trend
(not shown). Models (2) and (4) are similar to Ravallion and Chen (1997) but we update their
approach by also including the Gini as in Adams (2004), models (3) and (5) are similar to the
“improved standard model 2” in Bourguignon (2003), and model (6) is in the spirit of the preferred
specification in Kalwij and Verschoor (2007). The latter also use the annualized log difference of the
population (∆ ln popit) as an instrument and rely on real GDP per capita instead of real per capita
consumption. A first-stage F -test shows that ∆ ln popit is an extremely weak instrument. Kalwij
and Verschoor (2007) also use interactions of lagged inequality and lagged income with regional
dummies as instruments. However, first stage diagnostics suggest a weak IV problem (the F -stat
with regional dummy interactions is always lower than without) and thus we opt for a simpler
instrument set. Further, in model (5) and equation (5) we do not include the lagged levels of income
and inequality. Model (6) includes them for comparison with Kalwij and Verschoor (2007).
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Table B-3 – Predicted regional income semi-elasticities, preferred specification

Time period
1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

East Asia and Pacific -0.568 -0.573 -0.585 -0.583 -0.552
(0.034) (0.036) (0.046) (0.042) (0.051)

Eastern Europe and Central Asia -0.031 -0.214 -0.260 -0.225 -0.134
(0.008) (0.015) (0.020) (0.015) (0.010)

Latin America and Caribbean -0.374 -0.348 -0.334 -0.355 -0.194
(0.028) (0.025) (0.024) (0.026) (0.013)

Middle East and North Africa -0.405 -0.422 -0.447 -0.463 -0.313
(0.034) (0.037) (0.042) (0.043) (0.024)

South Asia -0.418 -0.458 -0.526 -0.572 -0.585
(0.023) (0.019) (0.022) (0.036) (0.044)

Sub-Saharan Africa -0.532 -0.354 -0.353 -0.440 -0.459
(0.024) (0.020) (0.020) (0.015) (0.015)

Notes: Standard errors obtained via a panel bootstrap using 999 replications. The predicted semi-
elasticities are based on estimated APEs at each region/time-period mean of ln ȳit and lnGit.

Table B-4 – Predicted regional Gini semi-elasticities, preferred specification

Time period
1981–1989 1990–1994 1995–1999 2000–2004 2005–2010

East Asia and Pacific 0.419 0.423 0.432 0.431 0.408
(0.053) (0.053) (0.055) (0.054) (0.053)

Eastern Europe and Central Asia 0.023 0.158 0.192 0.166 0.099
(0.007) (0.015) (0.019) (0.017) (0.012)

Latin America and Caribbean 0.276 0.257 0.247 0.262 0.143
(0.046) (0.043) (0.043) (0.045) (0.029)

Middle East and North Africa 0.299 0.311 0.330 0.342 0.231
(0.041) (0.040) (0.041) (0.044) (0.025)

South Asia 0.309 0.338 0.389 0.423 0.432
(0.056) (0.055) (0.052) (0.054) (0.055)

Sub-Saharan Africa 0.393 0.261 0.261 0.325 0.339
(0.050) (0.037) (0.040) (0.042) (0.043)

Notes: Standard errors obtained via a panel bootstrap using 999 replications. The predicted semi-
elasticities are based on estimated APEs at each region/time-period mean of ln ȳit and lnGit.
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Table B-5 – Growth in personal consumption expenditures per capita (in %)

Region Last 5 years Last 10 years Last 15 years Last 20 years

East Asia and Pacific 6.843 5.962 5.647 5.967
(1.041) (0.782) (0.837) (0.757)

Europe and Central Asia 4.532 6.033 4.793 2.856
(1.039) (1.063) (0.496) (0.423)

Latin America and the Caribbean 3.364 2.399 2.222 2.267
(0.746) (0.303) (0.172) (0.151)

Middle East and North Africa 2.705 3.778 2.911 2.499
(0.634) (0.560) (0.370) (0.349)

South Asia 5.563 4.684 4.123 3.636
(0.865) (0.556) (0.537) (0.438)

Sub-Saharan Africa 1.710 2.765 2.338 1.742
(1.599) (0.682) (0.577) (0.414)

N × T̄ 615 1222 1795 2332
N 123 123 123 123

Notes: Cluster robust standard errors in parentheses. Regional means are population weighted.
Only the third column is relevant for the projections.
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Table B-6 – Fractional probit models (QMLE) – Dependent variable: Hit, 2$ a day

(1) (2) (3) (4)
Institutions Human Capital Credit Trade
Hit APEs Hit APEs Hit APEs Hit APEs

ln ȳit -0.888 -0.285 -0.878 -0.284 -0.950 -0.289 -0.708 -0.302
(0.050) (0.012) (0.060) (0.011) (0.036) (0.009) (0.032) (0.012)

lnGit 0.779 0.250 0.805 0.261 0.765 0.233 0.581 0.248
(0.107) (0.028) (0.104) (0.027) (0.102) (0.027) (0.097) (0.033)

Executive Constraints 0.005 0.001
(0.005) (0.001)

Year of Schooling -0.002 -0.001
(0.017) (0.006)

Private Credit / GDP -0.007 -0.002
(0.040) (0.012)

Trade Openness 0.005 0.002
(0.017) (0.007)

Scale factor 0.321 0.324 0.304 0.426
N × T̄ 678 705 697 385
N 85 87 93 81
AIC 894.8 914.1 887.6 552.5
lnL -276.4 -286.1 -282.8 -163.2√
MSE 0.0203 0.0211 0.0201 0.0233

Notes: The estimation samples are smaller due to less data coverage and all observations with Ti = 1
are not used in estimation. All models include time averages (CRE), time dummies, survey dummies,
panel size dummies and interactions between the panel size dummies and the time averages (CRE).
The time averages are recomputed for each sample size. The coefficients of the time average of the
survey dummies and time effects are constrained to be equal across the panel sizes. The variance
equation depends on the panel size. The standard errors of the coefficients are robust to clustering
at the country level and the standard errors of the APEs are computed via the delta method. Data
on Executive Constraints is from the Polity IV database. Human capital is measured as Total Years
of Schooling from Barro and Lee (2012). We linearly interpolate the quinquennial data to an annual
series. Financial development measured as Private Credit / GDP is from Beck, Demirgüç-Kunt,
and Levine (2010). De jure Trade Openness is the binary measure developed by Sachs and Warner
(1995) and extended by Wacziarg and Welch (2008).
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Table B-7 – Fractional probit models (QMLE) – Dependent variable: Hit, 1.25$ a day

(1) (2) (3)
Regular Unbalanced Unbalanced + Two-Step

Hit APEs Hit APEs Hit APEs

ln ȳit -1.212 -0.216 -0.668 -0.218 -0.800 -0.263
(0.056) (0.010) (0.038) (0.008) (0.180) (0.034)

lnGit 1.238 0.221 0.726 0.237 0.714 0.235
(0.121) (0.022) (0.074) (0.020) (0.180) (0.032)

ν̂it 0.104
(0.104)

CRE (Corr. Rand. Effects) Yes Yes Yes
Survey type dummies Yes Yes Yes
Time dummies Yes Yes Yes
Panel size dummies No Yes Yes
Panel size dummies × CRE No Yes Yes
Variance equation No Yes Yes

Scale factor 0.179 0.326 0.329
N × T̄ 768 768 754
N 103 103 102
pseudo R2 0.988 0.995 0.995
lnL -172.4 -244.7 -243.7√
MSE 0.0339 0.0214 0.0220

Notes: The 1.25$ a day sample is smaller as for 20 observation we only have data at the 2$ a day
line. 21 observations with Ti = 1 are not used in estimation. In models (1) and (2), the standard
errors of the coefficients are robust to clustering at the country level and the standard errors of the
APEs are computed via the delta method. We include the time averages of the survey type and
time dummies in (2) and (3), but constrain their coefficients to be equal across the panel sizes. The
standard errors of the coefficients and the APEs in model (3) account for the first stage estimation
step with a panel bootstrap using 999 bootstrap replications. The linear projection in the first stage
uses lnPCEPit as an instrument for ln ȳit. The first-stage cluster-robust F-statistic in (3) is 24.40.
Model (3) also excludes West Bank and Gaza entirely (2 observations) and 12 observations from
ECA countries pre-1990 for lack of PCE data.
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Table B-8 – Poverty projections (Ĥit × 100), preferred specification, 1.25$ a day

2010 2010 2015 2020 2025 2030
Official Estimate Estimate Estimate Estimate Estimate

East Asia & Pacific 12.48 9.63 5.09 2.76 1.60 1.00
Europe & Central Asia 0.66 0.74 0.44 0.27 0.16 0.10
Latin America & the Caribbean 5.53 5.59 4.84 4.22 3.70 3.26
Middle East & North Africa 2.41 3.43 2.48 1.82 1.37 1.06
South Asia 31.03 33.81 23.89 16.09 10.53 6.89
Sub-Saharan Africa 48.47 46.87 42.95 39.84 37.20 34.86

World Total 20.63 20.44 15.82 12.66 10.58 9.27

Notes: Regional aggregates are based on the World Bank classification of low and middle income
countries in 1990. High income countries in 1990 are assumed to have no poor. The projections are
for 123 countries. West Bank and Gaza is excluded as we lack both PCE and population data.

Figure B-5 – Predicted regional poverty, 1.25$ a day, 2010 to 2030
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