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Abstract 

UK climate change policy has long been concerned with the transition to a more sustainable 
energy mix. The degree of competition in electricity markets rises as these markets become 
more and more liberalized. In order to survive in such an increasingly competitive setting, 
electricity producers have to handle as efficiently as possible the uncertainties associated with 
the volatility of fuel prices, but also uncertainties regarding the technological evolution of 
electricity production (including the development of renewable technologies). Technological 
uncertainty in combination with high capital costs are likely to deter investors from adopting 
renewable technologies on a larger scale than they are doing right now, even though they have 
to accept a higher degree of fuel price risk by doing so. By carefully composing a portfolio of 
technologies with different (co-)variances in the respective prices and rates of technical 
progress, risk-averse producers can effectively hedge the uncertainties mentioned above. In 
order to model this type of investment behaviour, we use an extended version of the van Zon 
and Fuss (2005) clay-clay-vintage-portfolio model that starts from the notion that investment in 
electricity production equipment is irreversible. However, a physical capital portfolio – in 
contrast to a portfolio of financial assets – can only be adjusted at the margin. This implies that 
it becomes extremely important to look ahead, and act on not just expectations themselves, but 
also their reliability. Using the extended model, we implement several features of present UK 
policy in order to illustrate the principles involved. We find that the reduction of risk goes 
together with an increase in total costs. We also find that for increasing values of risk-aversion, 
investors would be willing to adopt nuclear energy at earlier dates than otherwise would have 
been the case. In addition to this, we find that the embodiment of technical change, in 
combination with the expectation of a future switch towards another technology, may actually 
reduce current investment in that technology (while temporarily increasing current investment 
in competing technologies). The latter enables rational but risk-averse investors to maximise 
their productivity gain by waiting for ongoing embodied technical change to take place until the 
moment they plan to make the switch and then investing more heavily in the newest vintages 
associated with that technology at the time of the switch. 
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1. Introduction 

 

UK climate change policy started to be formulated in concise terms from the beginning of the 

1990s on. In response to the Framework Convention on Climate Change in Rio (1992) the target that 

the year 2000 emissions should be no larger than emissions in the year 1990 was set up as a voluntary 

agreement. Through the privatization of the electricity market by the Conservative Government, this 

target could largely be met. The change in government to New Labour did not interrupt UK efforts in 

reducing emissions. Even though the targets introduced during the Nineties might have been too 

ambitious to be met immediately, numerous measures have been enacted to counteract the ongoing 

increase in CO2 emissions in the UK. One example that directly affects the electricity industry is the 

so-called Renewables Obligation, which requires electricity retailers to acquire at least 10% of their 

electricity from renewable sources, but there are also a number of taxes involved in the wider 

emissions reduction program. In addition, nuclear electricity generation is presently considered as a 

potential “bridge” during the transition from fossil-fuel-based power production to a more sustainable 

system based on renewable energy.  

With liberalized electricity markets, investors in power generation face more competition and 

need to internalize and hedge a large number of uncertainties. These range from the risks that are due 

to the volatility of fuel prices to uncertainties about how renewable technologies will actually evolve 

in terms of their efficiency. Due to such technological uncertainties and high capital costs, investors in 

the electricity sector may still be reluctant to adopt renewable technologies on a larger scale, even 

though, by doing so, they may have to expose themselves to a higher degree of fuel price risk. 

However, by carefully composing a portfolio of technologies with different (co-)variances in the 

respective price changes and rates of technical progress, producers can effectively hedge these kinds 

of uncertainties. This implies that, in general, producers will opt for a mix of technologies, including 

technologies that are not yet fully developed.  

In addition, a portfolio-approach towards the investment problem seems to be especially suited in 

order to avoid irrecoverable downswings in the aggregate return on investment. To this end, we use 

an extended version of the van Zon and Fuss (2005) clay-clay-vintage-portfolio model that starts from 

the notion that investment in electricity production equipment is largely irreversible, since a physical 

capital portfolio – in contrast to a portfolio of financial assets – can only be adjusted at the margin. 

This implies that it becomes extremely important to look ahead, and act on not just expectations 

themselves, but also to consider the reliability of these forecasts. In addition, we add emissions and a 

number of other features to the model, which enables us to implement several important aspects of 

UK climate change policy. Our (preliminary) findings are roughly in line with the plan to use nuclear 

energy as a bridge to a more sustainable electricity portfolio. The latter seems to be entirely consistent 
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with the views of a rationally behaving risk-averse investor1. The paper is further organised as 

follows. In section 2, we will briefly discuss the current electricity mix of the UK, the projections 

about UK emissions, and the background of UK policy for GHG emissions reductions. Then, in 

section 3, we will give an overview of the model that we use for our analysis. In section 4, the results 

will be presented and interpreted2, while section 5 contains a summary and conclusion. 

 

2. Energy Conversion and Climate Change Policy in the UK 

 

During the 1990s the UK electricity mix, which up to that time had mainly been based on 

coal, became more diversified, as the share of gas in fuels used for power generation started to rise. At 

the end of the 1990s the share of nuclear energy fell substantially, which was due to more frequent 

outages at nuclear power stations for repairs, maintenance and safety case work (DTI, 2005). By 2004 

still less than 4% of all electricity produced in the UK came from techniques based on renewable 

energy3. Fig. 1 below illustrates the proportions of the current UK electricity generation mix. 

Figure 2 shows that, over the last decades, emissions from power generation have been 

decreasing, while electricity production has continued to increase, while CO2 emissions per unit of 

power generated have decreased by almost fifty percent. This favourable trend was mainly due to the 

switch from coal to gas, efficiency improvements at the plant level and – over the last few years - an 

increasing contribution of nuclear and renewable power to the overall electricity mix (DTI, 2005). 

However, GHG emissions are a stock externality, and there is now wide agreement that further GHG 

emissions will lead to considerable (and potentially irreversible) damages related to global warming if 

GHG concentrations rise beyond the threshold of 550-700 ppmv (see e.g. the IPCC scenarios). 

Consequently, UK policy makers have taken up the challenge of realising further emissions 

reductions and have set out clear goals for emissions reductions in the Energy White Paper (2003). 

 

                                                      
1 However, we should also admit here from the outset, that the data-set we have been able to obtain is 
very limited in terms of its coverage of technologies and time (for details see Appendix C). 
Nonetheless, it is the most complete data-set we could get hold of, and it serves its purpose of 
illustrating the principle working of the model reasonably well.  
2 The data, which are mainly taken from Anderson and Winne (2004) and complemented by 
information from the DTI, will be listed and described in Appendix C. 
3 The fraction of electricity coming from oil-fired generators had been falling from the late 1970s on 
and was negligibly small by 2004 already.�
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Current UK Energy Mix

coal gas
nuclear hydro
bio (biomass,biofuels,wastes) wind
photovoltaics

 

 

Fig. 1: UK Power Mix (based on data of installed capacity from the DTI, 2005). 

 

 
Fig. 2: Power Station Emissions of Carbon Dioxide (from DTI, UK Energy Sector Indicators 2005). 
  

 The projections about CO2 emissions, which are used for the Energy White Paper, amount to 

emissions of 145 MtC by the year 2050 (the worst case scenario is 180 MtC). This is the business as 

usual scenario, which is regarded to be most appropriate for policy analysis4. The target of UK 

climate change policy for 2050 is to cut CO2 emissions by 60%. That would translate to a level of 60 

MtC by 2050 and 110-120 MtC by 2020. The portion that could potentially be saved due to a more 

                                                      
4 However, this projection also takes into account the effect that the Renewables Obligation and the 
Climate Change Levy (which is a tax that does not directly affect the electricity sector) will have had 
by 2010, i.e. the achievement of the 10% renewables target. 
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intensive use of renewables in electricity production is estimated to be 3-5 MtC. A further reduction 

of 2-4 MtC could be achieved through fuel switching due to the EU emissions trading scheme. These 

levels of potential carbon savings might seem low relative to the total level of envisaged reductions. 

One might argue that e.g. large-scale hydropower techniques are already very advanced and could 

easily provide a larger share of the electricity mix. However, there is actually very little scope for any 

additional large-scale hydropower systems as suitable sites are scarce. Therefore, any additional 

capacity relying on hydro techniques must be small-scale.5 Likewise, the resources for some biomass 

technologies are limited, e.g. for landfill gas. Furthermore, importing crops for biomass electricity 

generation is often not economically viable, while at the same time such imports would also cause 

emissions related to transportation that will reduce net potential savings. Without further 

improvements in UK crop yields, it is therefore fair to assume that not much more than 20% of 

electricity demand can be met by biomass technologies, which already take up the lion’s share of 

renewable energy production nowadays. Similarly, wind will not constitute a higher share than 10% 

of demand, since there is not much scope for expansion (at least not onshore; with the advancement of 

offshore wind turbines, this picture will definitely change) and it cannot be relied upon during times 

of the day when there is no wind, also because storage possibilities are more than limited up to date.  

As already indicated in the introduction, the renewables target has mainly been met through 

the introduction of the so-called Renewables Obligation, which requires electricity retailers to acquire 

at least 10% of their electricity from renewable sources. At the same time, suppliers are obliged to 

generate the necessary amount of renewable electricity in order to secure the supply of renewable 

electricity. This is monitored by the UK gas and electricity market regulator Ofgem, which creates 

Renewable Obligation Certificates (ROCs) that the suppliers can acquire for each MWh of renewable 

energy generated. Supplier compliance can then be checked by the correct amount of ROCs. This 

arrangement effectively allows electricity generators to meet their obligations or not. In fact, they 

could also “buy out” of their obligation by acquiring ROCs. The price varies around £30/MWh (DTI, 

2002). Ofgem then recycles the money collected from the purchase of the ROCs back to the 

renewable electricity producers on the basis of the proportion of ROCs they constitute in the market. 

The UK has preferred to institute such a market-oriented approach to promote the use of renewables, 

even though the German system of feed-in tariffs has proven to be very effective in meeting targets as 

well. With the latter mechanism the producers receive a premium on top of the market price of 

electricity depending on the technology they are using. Solar techniques, for instance, receive much 

larger remunerations per MWh produced than e.g. large-scale hydro plants.  Interestingly, Mitchell et 

al (2006), who look into the subject much more deeply, find that the German feed-in system 

outperforms the UK Renewable Obligation mechanism with respect to the effectiveness of phasing in 

                                                      
�� On the other hand, even if all rivers in the UK could be tapped, the additional amount of 
hydropower would not exceed another 10,000 GWh according to DTI estimates. Upper-bounds of this 
kind will be incorporated as a maximum installable capacity constraint in our analysis later on.�
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renewable energy in the long run. They attribute this to the fact that it reduces the risk associated with 

investing in renewables-based capacity more than the UK system6. If true, this is a direct indication of 

the practical importance of risk for technology adoption in the electricity sector. 

The analysis of this paper will therefore not only focus on the status quo of the UK electricity 

generation mix and its response to uncertainty in the framework of our model, but it will also 

illustrate what risk would seem to imply for the way in which UK policy may succeed in meeting the 

(ambitious) targets that the government has set in terms of increasing the share of renewables in 

power generation with the ultimate goal of reducing GHG emissions in this sector. 

 

3. The Clay-Clay-Vintage Portfolio Selection Approach 

  

3.1 Introduction 

 

The model used in this paper is an extension of the one developed in van Zon and Fuss 

(2005). It is an optimum portfolio selection approach integrated with a two-dimensional clay-clay 

vintage model. The first of these two dimensions refers to the kind of basic technology that is used to 

produce electricity, like coal-fired plants, gas-fired plants, nuclear plants, and so on. The second 

dimension refers to quality/productivity differences between various generations within these basic 

technologies, due to embodied technical change. The clay-clay assumption implies that investment is 

(largely) irreversible. Embodied technical progress may turn the vintage that was cutting edge by the 

time it was installed obsolete due to the arrival of a new vintage, a process which is nowadays 

generally known as creative destruction “emphasised” by Schumpeter and “popularised” in an 

endogenous growth setting by Aghion and Howitt (1992).7  

There are some other studies that have made use of the ideas of Optimum Portfolio theory in 

order to analyze the energy sector. Awerbuch and Berger (2003), for example, use mean-variance 

portfolio optimization for their analysis of the EU electricity market. They examine different types of 

risk of which they find fuel price risk to be the dominant type. Our model however shows results for 

fuel price risk reductions that are qualitatively different from those regarding technological 

uncertainty. A further contribution to electricity planning problems comes from Madlener, 

Kumbaroglu and Ediger (2005). In terms of uncertainty they look at fluctuations in demand, peak load 

capacity, generation costs and the price of electricity, modelling the expected value of these items as 

discrete stochastic autoregressive moving average processes. Even though they use a dynamic 

                                                      
6 With a fixed tariff per kWh irrespective of the load profile of the technology to be deployed, the 
German policy effectively reduces price, volume and balancing risks to zero, while the ROC policy 
exposes UK electricity producers to a higher degree of uncertainty in all three respects (Mitchell et al, 
2006). 
7 However, the creative destruction aspects of technical change were already integrated in a vintage 
setting by Salter (1960) and Malcolmson (1975). �
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programming approach, their approach of maximizing the net present value of investment in a vintage 

model of electricity production is otherwise similar to ours. More specifically, they use their model to 

analyze data for the Turkish electricity sector, where a mainly gas-fired capacity had been added to 

installed capacity, which Madlener et al (2005) find to be a suboptimal choice in terms of risk 

reduction because coal prices are much less volatile than gas prices for Turkey. 

Portfolio considerations have also played a role in distribution and trading of electricity. As 

an example, Kleindorfer (2005) uses multi-period portfolio optimization subject to a Value-at-Risk 

(VaR) constraint, where a VaR constraint is the "maximum loss that the portfolio is allowed to sustain 

over a specified period of time and at a specified level of probability." (page 2, Kleindorfer, 2005). 

Kleindorfer (2005) makes a distinction between sellers (i.e. those who generate electricity in the first 

place) and buyers (i.e. distribution companies), who engage in contracts to satisfy the demand of their 

retail and wholesale customers. Such purchases and sales can possibly be made for several years in 

advance and the participants can use a number of financial instruments such as puts, forwards, calls, 

etc to hedge their risks. The extent to which buyers and sellers are risk averse is founded in the pre-

specified maximum loss in the VaR constraint. To conclude, Kleindorfer’s (2005) focus is more on 

power trading than on the actual set-up of power generating capacity that we investigate. 

Chaton and Doucet (2003) have a three-period model of the electricity sector, in which they 

also include issues of trading. However, they also take into account demand and price uncertainty and 

equipment availability. Equipment availability can be influenced by technological progress, for 

example. More work dealing with electricity generation capacity, but focussing strongly on the 

irreversibility of investment is done by Pindyck (1993). He investigates technical uncertainty and 

uncertainty with respect to construction cost. 

It is important to note that, even though we focus on the risks associated with volatile fuel and 

investment price growth and uncertainties with respect to fuel- and capital-saving technical change, 

which is quite similar to the objectives of the real options models referred to above (e.g. Pindyck, 

1993), we do so with a different type of method, combining OPT with clay-clay vintage modelling. 

As clay-clay vintage models explicitly deal with the both the cumulative character of technical change 

and the irreversibility of investment, we think that our approach is a valuable alternative to traditional 

real options modelling. In order to illustrate the approach free of too many interaction effects, we will 

further abstract from issues of power trading (Kleindorfer, 2005).  

Our basic results (cf. van Zon and Fuss (2005)) are qualitatively somewhat different from – 

and maybe even “richer” - than those of others, as they are in between the “standard” predictions of 

OPT and real options theory. Moreover, price and technological volatility have intrinsically different 

effects on investment: price-volatility generates “standard” OPT outcomes, whereas technological 

volatility does not. The reason is that in our set-up, producers may actually postpone investment in 

technologies that exhibit lower degrees of technological uncertainty in our model, whereas OPT 

predicts that assets with a lower associated risk will make up for a larger part of the portfolio 
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immediately. Real options theory traditionally recommends to wait and invest later in the face of 

uncertainty, and to invest more when volatility is reduced. The findings in van Zon and Fuss (2005) 

are partly in contrast with this because by linking OPT to vintage modelling we explicitly incorporate 

the embodied and cumulative nature of technical change into the investment decision. Whereas in real 

options theory the option value of waiting and keeping the investment opportunity open falls with a 

decrease in the variance, our (implicit) option value is adjusted for the benefits that can be realized 

through the cumulativeness of technical change, where the latter can more than outweigh the 

immediate gains from lower variance (van Zon and Fuss, 2005). We will here first outline the basic 

model of van Zon and Fuss (2005) and then highlight the new features that we have added. 

 
3.2 The Vintage Model 

 

In our model we will be using several multi-dimensional/indexed variables.  More 

specifically, we will be using the index f  to denote a technology family (fuel type), an index v to 

denote the moment in time at which the vintage under consideration has been installed, and t to 

denote the present moment in time. The variables Kf, Yf, Xf and Ff are the (vintage) level of 

investment, capacity output, actual output and fuel consumption per technology, respectively. We 

allow for embodied capital- and fuel-saving technical change at a proportional rate with a given 

expected value and a given (expected) variance of that rate. For the development of the volume of 

capital associated with each vintage, we then have: 

 

f
vv

vtf
tv KeK

f

,
)(

, ⋅= −δ           (1) 

 

where Kf
v,t measures the volume of capital still left of a vintage that was installed at time v after (t-v) 

periods of time have passed since its installation. In equation (1), �f is the (constant) exponential rate 

of physical decay associated with vintages belonging to family f. Hence, equation (1) states that the 

amount of capital associated with a vintage installed t-v periods ago will fall at a rate of �f percent per 

year due to technical wear and tear. For capacity output associated with a vintage we have: 

 

f
v

f
tvf

tv

K
Y

κ
,

, =            (2) 

 

In equation (2) �f
v is the capital-output ratio associated with a vintage of family f that was 

installed at time v. As we assume that there is no ex post disembodied technical change, �f
v does only 

depend on v. However, embodied (capital- and fuel-saving) technical change takes place at a given 

expected proportional rate and with given expected variance of that rate. We therefore have: 
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vff
v

f

e ⋅⋅= κκκ ˆ
0           (3) 

 

where fκ̂  is the expected proportional rate of change of the capital-output ratio.8 By analogy, we 

postulate for the fuel-output ratio �f
v  that: 

 

vff
v

f

e ⋅⋅= ϕϕϕ ˆ
0           (4) 

 

where fϕ̂  is the expected proportional rate of change of the fuel-output ratio.9 Hence, for fuel 

consumption per vintage belonging to family f we find: 

 
f
tv

f
v

f
tv XF ,, ⋅= ϕ                         (5) 

 

We can use (2) to find the "demand" for capital per vintage in function of the level of 

installed/required capacity (in “capital” terms): 

 
f
tv

f
v

f
tv YK ,, ⋅= κ            (6) 

 

3.3 Incorporating Ex Ante Investment Decisions under Uncertainty 

 

Given the factor requirements above, there are now two problems to solve. The first one is the 

problem how much to invest per technology family, given its specific characteristics. The second 

problem is the timing of investment. Since investment is irreversible ex post (i.e. capital costs are 

sunk), the investment planning process should involve both forward-looking expectations as well as a 

measure of risk aversion in order to accommodate this irreversibility. Therefore, we assume that 

producers minimize the weighted sum of the expected present value of total cost and the variance of 

that cost by carefully choosing a composition of their vintage portfolio in both the family dimension 

and the vintage/productivity dimension, because as rational, risk-averse investors they would be 

willing to reduce risks by spreading investments both over technologies and over time.  

However, as we are using a planning period with fixed length, the irreversibility of 

investment would provide a bias against investment in capital-intensive technologies at the end of the 

planning period. Hence, we take irreversibility to mean “ex post clay during the planning period”, 

rather than “ex post clay for all times”. We implement the latter by noting that in principle the value 

                                                      
8 A negative/positive value of this rate therefore reflects capital-saving/-using technical change. 
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of investment should be equal to the present value of interest and depreciation charges on investment 

(cf. Appendix A for more details). So, in order to make the relative contribution of capital costs to 

total costs during the planning period comparable between vintages that are installed at different 

points in time during the planning period, we simply assume that the relevant capital costs are actually 

the present value of the interest and depreciation charges associated with a particular vintage that are 

incurred until the end of the planning period. 

In order to calculate the portfolio variance of the present value of buying and using the 

vintage portfolio, we first describe how capital and fuel costs are expected to develop over time and 

what the corresponding variance of these expectations will be. 

 

3.4 Expected Variance in Fixed and Variable Cost Components 

 

The present value (further called “PV”) of capital and fuel costs for all technology families f  

over a planning period with length �  is given by: 

 

� ��
= =

⋅− �
�

�
�
�

� ⋅⋅+⋅⋅⋅Ψ⋅=
θ

θ
ρ ϕκ

0 0
,,

t

t

v

f
tv

f
v

f
t

f
t

f
t

f
t

f
t

t

f

XQYPePV                                               (7) 

In equation (7), � is the rate of discount, while 
1

, 1
1

1
+−

��
�

�
��
�

�

+
−−=Ψ

tf
f

t

θ

θ ρ
δ

 reflects the share of 

initial investment outlays that can be regarded as the discounted10 flows of factor payments (i.e. 

interest and depreciation charges) for the years from t until the end of the planning period θ . Pf
t is the 

cost of a unit of investment of a vintage at installation time t with 0≤t≤�. In equation (7) depreciation 

charges are valued at historic cost-prices, rather than at replacement value11. �f
t is the capital/capacity-

output ratio associated with vintage t. Since we do not have any disembodied technical change ex post 

by assumption, the capital-output ratio does not change, once a vintage has been installed. Qf
t is the 

                                                                                                                                                                     
9 See note 7. 
10 These flows during the period t..θ  are discounted back until time t. The term te ⋅−ρ  then takes 
account of further discounting costs until the beginning of the planning period, i.e. time zero. Note 
that for an infinitely long horizon, the share would approach a value of 1, whereas for a very short 
horizon, the shortest possible being 0 for investment taking place in the first year after the planning 
period, the share is equal to zero. So, for t approachingθ , the share is falling towards zero. For further 
details see appendix A. 
11 Note that a change in investment prices then affects only the marginal vintage in a technology 
family, as opposed to changing fuel prices that would affect production on all vintages in a 
technology family at the same time. So valuation at historic cost-prices introduces a qualitative 
difference between capital and fuel costs that would vanish in part if capital would be valued at 
replacement costs. Of course, there would still be the qualitative difference arising from capital costs 
being associated with capacity installed and fuel costs with capacity used.�
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user price of a unit of fuel f used at time t. The price of fuels does not depend on the vintage v, for 

which it is used. Hence, for all vintages v, Q only depends on t. �f
v is the corresponding fuel-output 

ratio. Yf
v is the total capacity of vintage v at its time of installation. That amount will decrease due to 

depreciation, and it therefore limits actual output on a vintage v at time t, i.e. f
tvX , , in accordance with 

f
v

vtf
tv YeX

f

⋅≤ −⋅− )(
,

δ . 

In order to calculate the variance of the present value of total cost as given by (7), we have 

made several simplifying assumptions. The first one is that the (constant) discount rate also reflects 

the required internal net rate of return on investment. The second one is that forecasting errors are 

serially uncorrelated, and that (co-) variances of the growth rates of fuel and investment prices, but 

also of the rates of fuel-saving and capital-saving technical change, are constant. In that case, it should 

be noted that for constant expected values of the growth rates of prices and capital and fuel 

coefficients, a first order approximation of equation (7) is given by: 
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ˆˆ, ϕϕ ε , and where x
jε  is the 

forecasting error associated with variable x for time j. Variables with a tilde represent their expected 

values. Moreover, in equation (8), fP̂  and fQ̂  are the expected growth rates of investment prices 

and fuel prices for technology family f. fκ̂  and fϕ̂  are the expected rates of capital- and fuel-using 

technical change.12 All forecasting errors x
jε  are assumed to have zero expectation. Note the subscript 

v in f
vS ,ϕ̂ . The other sums of error terms all depend just on t.  

Equation (8) can now be used to calculate the (approximated) expected forecasting error in 

the present value of total capital and fuel costs. Given that K is the set of stochastic variables, i.e. 

}ˆ,ˆ,ˆ,ˆ{ ϕκ QPK = , while k1 and k2 are ”running” elements of this set, then the expectation of its 

squared value will be equal to the total variance of the PV, which in turn is given by:  
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where min(t1,t2) represents the minimum of t1 and t2. 2,2
1,1
kf

kfσ  is the co-variance between the growth 

rates of the different stochastic variables k1 and k2 for technology families f1 and f2.13  The “terms” 
1,1

1
kf

tm and 2,2
2

kf
tm are defined in terms of the actual control variables of the problem, i.e. investment in 

individual vintages of different technology families and the corresponding production plans for those 

vintages. For further details, see Appendix B. 

 

3.4 New Features 

 

3.4.1 Introduction 

 

In order to increase the degree of realism of the model, we have included a number of new 

features in the van Zon and Fuss (2005) framework. First of all, it is not just prices and technical 

change that are uncertain in this model, but also demand is no longer assumed to be known with 

certainty. The risk of facing higher demand than expected, is captured by the introduction of two 

demand scenarios, a low demand scenario (which is the standard extrapolation of known trends) and a 

high demand scenario (which exceeds the expectation of unchanged growth in demand).14 Weighing 

both scenarios by their probabilities we can determine the optimum value of investment that needs to 

be undertaken to be able to meet demand in all circumstances. Second, additional capacity may not be 

installed without bounds as mentioned above. In the case of hydroelectric utilities, for example, the 

UK has almost reached maximum installable capacity, i.e. there are not enough suitable sites left to 

realize additional investments. Therefore, investment is constrained here by the estimates for 

maximum installable capacity. Third, there are differences across technology families with respect to 

their load characteristics. While coal-fired turbines, for example, have load factors of 80% and more, 

wind energy and solar techniques depend on external circumstances that do not allow them to produce 

electricity continuously. Fourth, we make a distinction between base load and peak load technologies, 

where typically coal, nuclear and renewables are used for base load production, whereas gas can be 

used to meet peaks in demand. Fifth, the UK government has expressed interest in producing at least 

some output using renewable fuels. We want to include this as an explicit constraint in our model. 

Finally, as environmental concerns pertain for an important part to (cumulative) CO2 emissions, we 

have included these in the model, too. In this way we can see what the introduction of emission caps 

                                                      
13 In the actual calculations we will assume that all co-variances are equal to zero, as we have only 
relatively little data at our disposal to measure these co-variances, and our immediate purpose is to 
illustrate the working of the model. This has the added bonus of considerably speeding up the 
calculations. We implement this by requiring that k2=k1 and f2=f1 for all values of k1 and f1. See 
Appendix B for further details. 
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would mean for the technology composition of the electricity production portfolio and the timing of 

investment. 

 

3.4.2 Implementation New Features 

 

Uncertainty in demand 

With respect to demand we assume that producers distinguish between different demand 

scenarios, in which demand grows over time at different exponential growth rates, with equally 

different probabilities. In all scenarios, production plans should be sufficient to meet demand. 

Production capacity in turn should be able to accommodate all these different production plans. We 

therefore have to add a demand scenario dimension to all production plans (and to all the decision 

variables that depend on production plans, such as e.g. emissions), and so end up with the following 

revised demand constraints: 

 

��
=

≥
f

t

v

s
t

sf
tv DX

0

,
,           (10) 

 

In equation (10) s
tD  represents the expected time path of demand under demand-scenario s, 

while sf
tvX ,

,  represents the corresponding production plans for all vintages v installed up to time t and 

belonging to technology family f.  

 

Load-factors 

For each vintage in each technology family, we also have to take into consideration that 

actual output cannot be larger than capacity output, corrected for the (maximum) load factor 

associated with each technology. The load factor indicates how much of capacity is effectively 

available for production purposes. This availability depends on down-times that are technology 

specific, but also weather conditions as in photovoltaic or wind-powered generators. Hence, as 

additional constraints we now have the “effective capacity” constraint: 

 

ff
v

vtfs
tv lYeX

f

⋅⋅≤ −⋅− )(,
,

δ                                                                (11) 

where lf  is the (maximum) load factor associated with technology family f.  It should be noted that if 

there is a positive slack associated with equation (11), then this implies that capacity is underutilised, 

in which case actual rates of capacity utilisation will be variable and smaller than lf. 

                                                                                                                                                                     
14 Of course there could be more than two demand scenarios. But at this stage we only want to 
illustrate the principles involved.�



 13

Emissions 

Fuel consumption generates emissions of various types, depending on the type of fuel used. 

Hence, we have: 

 

��
=

⋅⋅=
f

t

v

sf
tv

f
v

f
i

s
ti Xe

0

,
,, ϕω                      (12) 

 

where s
tie ,  are total emissions of type i at time t under scenario s. f

iω  are emissions of type i per unit 

of fuel consumption in technology family f. Caps on emissions can now be integrated in the model by 

means of the following constraints:  

 

ti
s

ti cape ,, ≤            (13) 

 

where capi,t is some exogenous (desired) time path for total emissions of type i.15 

  

Minimum renewables market shares  

Based on the more general emission targets, the UK government has expressed its desire to 

produce at least 10 percent of total electricity demand using renewables16. This is implemented as 

follows: 

 

� �
′∈ =

⋅≥
Rf

t

v

s
t

sf
tv DxX

0

,
,           (14) 

 

where R’ denotes the set of renewables and where x=0.1. Obviously, this target could also have been 

specified in terms of expected demand, rather than in terms of maximum demand17, as it has been 

done here. Equation (14) is of course more strongly binding as it is, if at all.  

 

 

 

Physical limits to production capacity for specific technology families 

The capacity of some renewables, like hydro, is limited by the physical availability of 

production possibilities. We have implemented this by including some physical constraints on 

aggregate renewables capacity per technology family:  

                                                      
15 Obviously, emission caps may depend on the scenario too. 
16 See section 2. 
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In equation (15), f
tM  represents the maximum value of aggregate capacity by technology 

family. For hydro, biowaste and biomass taken together, as well as wind, these limits are equal to 

50.8, 71.5 and 34 GWh, respectively. 

 

Peak-load demand  

Some technology families are especially suited for the production of peak-load demand, 

because they are easy to “switch on” at the time they are most needed. Gas-fired turbines in particular 

are well suited. Because peak-load demand must be serviced at any time it arises, we must require that 

production using the set of peak-load technology families is at least as large as the actual peak-load 

demand. We therefore have: 

 

� �
∈ =

⋅≥
' 0

,
,

Pf

t

v

s
t

sf
tv DpX           (16) 

 

where P’  represents the set of technologies that can be used for peak-load production (in our case 

only gas), and where p represents the fraction of demand to be regarded as peak-load demand.18 

Strictly speaking, equation (16) is an actual production constraint, whereas it is the highest peak that 

determines required capacity peak-load supply, and the average peak size (amplitude and duration) 

that determines cumulative production under peak-load circumstances (and the corresponding partial 

under-utilisation of peak-load capacity).  

 

3.4.3 The Objective Function 

 

For a given demand scenario, we assume that producers will want to minimize a weighted 

sum of the expected present value (PV) of their total production cost and its corresponding variance: 

 

)var( sss PVPV ⋅+=Φ λ          (17) 

 

where � is the relative weight of the variance of the PV of total costs in the objective function. We 

will further assume that � is a non-negative constant. 

                                                                                                                                                                     
17 This also goes for equation (10). 
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Producers are supposed to minimize (10) by choosing the optimum values of both initial 

vintage capacity, Yf
v, per family f  for all vintages to be installed during the planning period, and a 

corresponding "production plan" (i.e. sf
tvX ,

, ) for each vintage that one plans to install. Yf
v and sf

tvX ,
,  

are chosen conditionally on the expected values and (co-) variances of the stochastic variables in this 

setting, i.e. investment and fuel price growth as well as the proportional rates of change of the capital- 

and fuel-coefficients due to embodied technical change.  

Given the scenario-specific values of the objective function, the ultimate criterion for the 

electricity investment program is the minimisation of the expected value of the variance-adjusted 

costs of buying new and operating total (i.e. both new and ”old”) capacity over the entire planning 

period, i.e. minimisation of: 

 
s

s
s Φ⋅=Φ �π            (18) 

subject to all the constraints listed above. In equation (18), sπ  is the subjective probability of scenario 

s arising.19 

The full model now consists of the objective function (18) that needs to be minimized, subject 

to the constraints (7)-(17), and where the definition of the present value of total investment and 

operating costs are given by (7) and (8). Moreover, PVs in (18) is evaluated using (8) with all "S-

terms" set equal to zero in order to obtain the expected value of the present value of total cost. 

Equation (9) is used to evaluate var(PVs) in equation (17). 

 

4. Simulation Results 

 

4.1 Introduction 

 

Technology characterisation 

In this section we present the results obtained using a number of simulations that are meant to 

highlight the working of the model. Before we describe the outcomes of the various experiments, 

however, we first want to broadly categorise the various production technologies in terms of the 

growth rates and variances of their capital and fuel costs, but also in terms of the growth rates of their 

capital and fuel productivity and the corresponding variances. To this end, the data in Appendix C 

have been summarized in Table 1.  

 

                                                                                                                                                                     
18 We have assumed p=0.1 for all simulations.�
19 It should be noted that we could also introduce risk aversion at this level of decision making, by 
amending (18) to include the variance in sΦ . For reasons of simplicity, we have not done this here. 



 16

 

Table 1. Input data 

 
The corresponding (admittedly somewhat impressionistic) technology characterisation is 

listed in Table 2. Such a characterisation may be of help to interpret the results obtained in the various 

simulation runs outlined further below. From that table, it follows that the combination of low load-

factors and medium to high capital costs are likely to make wind and photovoltaic generation 

unattractive substitutes for carbon based technologies, but for the fact that they do not generate any 

CO2 emissions. In addition to this, wind has a high variance in capital-saving TC because the data 

also take into account the highly risky offshore wind technologies. Biomass/biowaste has similar cost 

properties as wind and photovoltaics, but savings prospects through technological change are more 

positive than with wind and photovoltaic generation. This also goes for the load factor that helps to 

reduce the relative impact of capital costs on total costs.  Hydro is an established technology in the 

sense that there is little or no (capital-saving) technical change, but also little variance in technical 

change. Nuclear energy is a relatively sure bet: technical change is relatively slow but certain. This 

counteracts to some extent the high capital costs, next to relatively low fuel costs and low variance in 

the price-growth of nuclear fuels. The latter does not hold for gas that in addition also suffers from 

                                                      
20 By construction through a suitable choice of units of measurements. 
21 Assumption due to lack of data. 
22 Assumption due to lack of data. 

 Coal Gas Nuclear Hydro Biomass Biowaste Wind Pv 

δ  0.0333 0.0400 0.0333 0.0250 0.0400 0.0400 0.0400 0.0333 

Load-factor 0.8 0.8 0.8 0.5 0.8 0.8 0.3 0.22 

0κ 20 1 1 1 1 1 1 1 1 

0ϕ  2.76 2.166 2.65 0 4.187 4.187 0 0 

0P  136.98 51.370 251.141 171.232 205.480 205.480 136.986 456.621 

0Q  6.522 10.16 4.151 0 4.060 0 0 0 

κ̂  -0.0099 -0.0163 -0.0047 -0.0064 -0.0463 -0.04 -0.0219 -0.0086 

ϕ̂  -0.0017 -0.0029 -0.0029 0 -0.0042 0 0 0 

P̂ 21 
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Q̂  
0.025 0.040 0.018 0 0 0 0 0 

2
κ̂σ  

0.000570 0.000938 0.000017 0.000160 0.000001 0.00931 0.00083 0.026800 

2
ϕ̂σ  

0.000114 0.000118 0.000089 0 0.000256 0 0 0 

2
P̂

σ 22 
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

2
Q̂

σ  
0.011240 0.018820 0.001620 0 0 0 0 0 
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high capital costs. So gas could be expected to have a relatively low share a priori, save for the fact 

that technical change is relatively fast, but also relatively uncertain. However, with a CO2 emission 

cap, and given the fact that gas is a peak-load fuel, the share of gas in total electricity production must 

remain significant. Finally, coal is a “middle of the road” type of fuel with medium capital and fuel 

costs and medium or low rates of technical change and variances of those rates. 

 

Parameters Coal Gas Nuclear Hydro Biomass Biowaste Wind Pv 

Capital cost medium low high medium high high medium high 

Fuel cost medium high medium nr23 medium low low low 
Fuel cost 
growth medium high low nr nr nr nr nr 

Variance fuel 
cost growth  medium high low nr nr nr nr nr 

Fuel-saving TC low medium medium nr high nr nr nr 
Variance fuel-

sav. TC  medium medium low nr high nr nr nr 
Capital-saving 

TC low medium low low high high high low 
Variance 

capital-sav. TC  low medium low low low high high high 

Load factor high high high medium high high low low 

 

Table 2. Characterization of technology families 

 

Simulation runs 

In the following subsection we first describe the base-run, i.e. the outcomes associated with 

the investment program for a planning period of 30 years that fits all the constraints that were 

described in more detail in section 3, except that it does not contain a CO2 emission cap. The base-

run has been obtained for a value of 0=λ . That implies that the variance of the cost of the entire 

investment program is not an issue. The base-run results are labelled R0 and they are discussed in 

section 4.2. There are 4 other runs, called R1-R4 that redo the base-run but then for values of λ  equal 

to 0.000015, 0.00003, 0.000045 and 0.00006. The results associated with these runs are presented in 

section 4.3. They show how increasing risk aversion would influence the optimum composition of the 

capital stock in terms of technology families. Section 4.4 contains the run that is based on a value of 

000015.0=λ , i.e. R1 and on a cap on CO2 emissions defined by the emission path that grows at a 

constant proportional rate from a level of 150 MtCO2 to a level that is about 25% lower than in R0 at 

the end of the planning period, i.e. to a level of (1-0.25).350=245 MtCO2. Section 4.5 contains a run, 

i.e. R6, again with 000015.0=λ , but also a doubling of the expected variance in the growth rate of 

gas prices, from the beginning of the planning period. Finally, section 4.6 contains the results of a run 

(R7) that pertains to a large shock in the variance of the rate of fuel-saving technical change for 

                                                      
23 nr means not relevant in this case. 
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nuclear energy. We do this to see whether renewables could take over, more or less on their own, 

from nuclear energy in these circumstances.  

 

4.2 The Base-Run 

 

These are the results for the base run, using the data from appendix C, but disregarding the 

variance in fuel prices and rates of technical change by setting 0=λ . For the low growth (1.5%) 

demand scenario (S1) and the high demand growth (2.5%) scenario S2, we have plotted the actual 

production shares for both scenarios, as obtained in the base-run.  
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                               Fig. 4.2.1                                                             Fig. 4.2.2 

 

In both scenarios, we start out with the same distribution over technologies in the beginning. 

However, it is clear that gas-based generation takes over to meet the additional demand in the case of 

the second scenario. This increased production from gas-based electricity generation goes at the 

expense of coal, but also of hydro and nuclear by a smaller margin. This can be explained by the fact 

that gas has the lowest investment prices and can be installed at less additional cost than any of the 

other technologies. This more than outweighs the disadvantage of being more expensive in terms of 

fuel, since the high demand scenario has a much lower probability of occurring than the standard 

scenario S1. Indeed, gas is also a peak-load fuel, and as such its higher share in S2 is not very 

surprising. 

In Figures 4.2.3 and 4.2.4 we present the underlying capacity composition. Without any risk 

aversion, the weight of the variance in the objective function is equal to zero. In other words, all 

technologies become perfect substitutes, with gradually evolving costs characteristics per fuel 

technology driving the intertemporal variations in the composition of the technology portfolio. Total 

unit costs evolve according to increases in investment and fuel prices, but may also shrink as a result 
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of either capital- or fuel-saving technical change. Other features that matter in this respect are related 

to constraints on maximum installable capacity, peak- and base-load characteristics and initial 

conditions (i.e. production using “old” vintages may go on as long as variable (fuel) costs are lower 

than total unit costs on “new” vintages (this is essentially Malcolmson’s scrapping condition, cf. 

Malcolmson (1975)).  
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                              Fig. 4.2.3                                                               Fig. 4.2.4 

 

Fig. 4.3.2 illustrates the points made above more clearly. Without risk aversion, the 

technologies are perfect substitutes to the extent that the cheapest alternative is always what should be 

invested into, when the present value of total unit costs for one technology falls below those of 

another one. In the beginning gas and hydro are the only technologies that undergo some investment, 

which is observable from their increasing capacity shares. The other technologies actually see a 

decrease in their capacity shares, which is due to depreciation, so there is no net investment in those 

technologies.  

 One may wonder why wind and biomass do not constitute a higher share of capacity here. 

This is in part due to the constraints that we have imposed on these technologies (and also hydro). 

Since it has not proven economically viable to import biomass, while domestic supplies will be 

limited in the future, we have applied an upper bound on the use of this technology. Investment in 

wind does occur after technical change has sufficiently reduced capital costs. However, the share 

stays rather constant afterwards, for the reason that we have excluded the much more expensive 

alternative of offshore wind turbines in this analysis, even though it becomes more and more 

infeasible to build additional windmills onshore, especially in the more densely populated areas of the 

UK. 
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This leaves us with the composition of electricity generation equipment shown in the picture 

below. Overall, we can say that gas still constitutes the lion’s share of the electricity mix, followed by 

coal, whereas wind and bio-wastes have gained at the expense of nuclear power, hydropower, 

biomass and solar photovoltaic generation.  

 

4.3 Introducing Risk Aversion 

 

 In this section we present the results associated with the introduction of risk aversion. We 

redo the base-run, but now for values of λ  equal to 1.5x10-5,3x10-5,4.5x10-5, 6x10-5. In Figures 4.3.1 

and 4.3.2 below, we show how total costs and the corresponding square root of the variance evolve in 

function of λ .  

From Figure 4.3.1 it is clear that total costs are increasing in risk aversion, as one would expect. This 

follows from the fact that we started out with a cost-minimizing portfolio under the no-risk aversion 

assumption of the base run. Any change from that position must increase costs, therefore. From Fig. 

4.3.2 it can be seen that there are decreasing returns to risk aversion, in the sense that for ongoing 

increases in the coefficient of risk aversion, the corresponding decreases in the “standard deviation” 

of total costs (as a fraction of total costs) will become ever smaller, as the curve in Fig. 4.3.2 is 

convex and falling. This also goes for the plot of the variance against costs given in Figure 4.3.3. 

Further decreases in variance can only be realized at ever increasing total costs, so further reductions 

in variance become ever more costly the lower variance becomes.24  
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Fig. 4.3.1       Fig. 4.3.2 

 

                                                      
24 It should be noted that at a value of 5105.1 −⋅=λ , the standard deviation of total costs relative to 
total costs is of the order of 10%, which looks like a reasonable order of magnitude a priori. 
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Fig. 4.3.3 

 

In Figures 4.3.4 to 4.3.6 we show what happens to the shares of coal, gas and nuclear in total 

capacity output, as the reduction in variance can essentially only be brought about by a reshuffling of 

the technology portfolio and the associated production plans. In Fig. 4.3.4 one can see that the swings 

in the share of coal during the base-run are stretched out more evenly over time. Shares are lower at 

the end of the planning period and higher at the beginning. For gas, shares fall structurally below the 

base run in the beginning, picking up at the end again, thus also levelling out fluctuations in shares to 

some extent. However, one should recall that gas is a fuel with a relatively high variance both with 

respect to fuel price growth and with respect to technical change. Hence, while smoothing out 

fluctuation is always a good strategy when it comes down to variance reduction, reducing the 

portfolio shares of high variance technologies is an especially good option in this case. In Fig. 4.3.5 

we see both principles at work. 
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 Fig. 4.3.6 shows that risk-averse investors would gladly accept nuclear power as a bridge to a 

“care free” future. Of course, concerns about the negative externalities associated with CO2 

emissions, should be weighed against the legitimate concerns about the processing and quasi-

permanent storage of nuclear waste material, and the threats of micro-proliferation amongst terrorist 

groups. Nonetheless, nuclear energy is widely regarded as a means to buy time to find the ultimate 

solution to our energy problems through carbon sequestration in combination with a more intensive 

use of renewables. Note from Fig. 4.3.6 that the lower the degree of risk aversion, the later the 

moment in time within the planning period at which people are starting to build the bridge. However, 

one should note that they may want to postpone building such a bridge or calling it off altogether, if 

the risks involved in decommissioning nuclear power plants would also be taken into account, for 

example by the introduction of dismantling costs, that are highly uncertain. However, the variance 

data that we have been able to compile suggest that nuclear energy is a fairly “risk-free” alternative, 

which might raise some doubts. 
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      Fig. 4.3.6          Fig. 4.3.7 

 

In Fig. 4.3.7 we show what happens to emissions due to the reshuffling of the technology 

portfolio. The figure contains the probability weighted averages of total emissions in both demand 

scenarios S1 and S2. The one in the base run, i.e. “R0”, generates the highest emissions at the end of 

the planning period, mainly because coal is still an important portfolio ingredient by then. This is 

shown quite clearly in Fig. 4.3.7, where fluctuations in emissions follow those in the share of coal in 

total capacity quite closely (cf. Fig. 4.3.4). 

 

 



 23

4.4 CO2 Emission Caps  

 

 We now combine R1 (with a value of 5105.1 −⋅=λ ) with a cap on CO2 emissions. It should 

be noted on beforehand that even a relatively slight degree of risk aversion generated a reshuffling of 

the technology portfolio such that in R0, emissions at the end of the planning period were way below 

emission levels in the base run (by more than 25 percent). This means that our time path for emissions 

that begins at 150 MtCO2 and ends at (1-0.25)*350=245 MtCO2 will not be binding at the end of the 

planning period (see also Fig. 4.3.7). But it will be binding in the middle-regions of the planning 

period, as we can see quite clearly from Fig. 4.4.1. In this Figure, the flat stretch of emissions for run 

R5 coincides with the emissions constraint being binding. How the corresponding emission reductions 

are brought about can be seen from Fig. 4.4.2. 
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Fig. 4.4.1. 

  

In Fig. 4.4.2 we show the absolute differences between the percentage capacity shares in runs 

R5 and R1. The carbon content of electricity production is reduced in period 6 by a simultaneous 

reduction in coal and an increase in gas. The more binding the CO2 emission cap becomes the more 

additional carbon-free capacity is installed, in this case nuclear power. Then, as emissions are reduced 

anyhow from period 15 on (see Fig. 4.4.1), the technology distribution of  power production almost 

reverts to normal, except that the share of nuclear energy is slightly above the base run, and those of 

gas and coal are correspondingly lower. This also leads to slightly lower emissions at the end of the 
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planning period, simply because once nuclear has been installed it will stay around for a relatively 

long time, since capital costs are sunk in the beginning, and old technologies are replaced by new 

ones only if the total unit costs on the new technologies drop below the unit variable cost on the old 

technologies. We see therefore that a temporary binding emission constraint can induce semi-

structural emission reductions, because the composition of the capital stock changes. In addition, due 

to the ex post clay character of technologies themselves, and the “near clay” character of the 

technology portfolio as a whole, the capital stock only slowly adjusts to a situation where the caps are 

no longer binding.25  
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Fig. 4.4.2 

 

4.5 Fuel Price Variance 

 

 In experiment R6 we have increased the variance of fuel price growth by 100% in the case of 

gas, for a value of 5105.1 −⋅=λ . So, in order to see what such an increase in fuel price growth 

variance implies, we have to compare runs R6 and R1, since in the latter case we do not have any 

                                                      
25 It should be noted, that in our experimental setting this adjustment of the capital stock is taking 
place as quickly as is technically feasible, since the optimisation program “knows” when the CO2 
emission constraints will become non binding, and can adapt ex ante (by a suitable adjustment of the 
portfolio) to this situation by choosing a more carbon intensive portfolio than otherwise would have 
been the case. 
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CO2 emission caps either. The absolute differences between capacity shares in this case are presented 

in Fig. 4.5.1 below. 

We see that the increase in gas price growth variance significantly reduces the portfolio share 

of gas. Bio-waste and somewhat later coal take over, and after a slight dip in the middle of the 

planning period, nuclear energy is phased in as well. At the end of the planning period, gas has 

become a very unattractive portfolio component indeed, and coal and nuclear energy have 

permanently taken over. 
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Fig. 4.5.1 

 

4.6 Increases in Technological Variance 

 

For technological uncertainty to have the largest possible impact, it is necessary to implement 

it as increased variance in the rate of fuel-saving technical change, as fuel consumption associated 

with a specific vintage is a continuous process, whereas investment takes place at just the moment of 

installation of that vintage. We have chosen nuclear energy for increased uncertainty with respect to 

technological change, first of all because controlled fusion has been a technological promise for over 

50 years, and it still is. The second reason is that in our simulations, nuclear energy consistently 

appears to be the “saviour of last resort”. This leads us to wonder whether renewables would stand a 

chance to take over this role, if nuclear energy would become less attractive for some reason. In order 

to find this out, we have performed an experiment, in which we have increased the variance of fuel-
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saving technical change in nuclear energy production by a factor of 100 (since fuel costs are relatively 

unimportant in nuclear energy production as compared to coal and gas fired power plants, we need a 

relatively large shock for its effect to become noticeable).  
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Fig. 4.6.1 

 

Run R7 is the same as R1, except for the shock in the variance of fuel-saving technical 

change. The results are presented in Figure 4.6.1. In that Figure, we see that the change in the 

variance of technical change in nuclear energy production, although implemented from the beginning 

of the planning period, takes a while before it has an impact. This is due to the fact that nuclear had 

not been invested in during the first half of the planning period in R1 in the first place. Only from the 

period onward where there was investment in nuclear in R1 (i.e. in year 14), do we see a negative 

deviation from the results w.r.t. R1 therefore. Another result to note is the negative deviation in coal 

before period 14, which is compensated by an increase in gas capacity. Since investors are fully aware 

of the drop in nuclear at the beginning of the planning period already and they know that they will 

have to compensate this drop by investing more heavily in coal, they actually have an incentive to 

decrease their installed capacity of coal earlier on because this will enable them to install a larger 

amount of more modern and productive vintages when the time has come to replace nuclear capacity. 

In other words, by reducing coal earlier on, investors create room for more advanced capacity later 

on. The gap is closed by gas, since gas has relatively low instalment cost and can therefore easily 

make up for the lack of coal in the short run. 



 27

This experiment is therefore a good illustration of the workings of the model, not only in the 

technology dimension (i.e. diversification over technology families leads to substitution of coal for 

nuclear, which becomes less attractive through less certain prospects of technical change), but also in 

the quality or time dimension (i.e. it pays off to wait for ongoing technical change to take place and 

reap the full benefits of being able to install higher quality vintages when investment becomes 

necessary and thus to substitute investment in coal today for investment in coal at a later point in 

time).   

 

5. Summary and Conclusion 

 

 In this paper we have presented the outcomes of some simulations with a model based on van 

Zon and Fuss (2005). The latter model integrates elements from optimum financial portfolio theory 

with a vintage model of production for the electricity sector. The main ideas behind that model are 

that technological change is embodied in machinery and equipment, and that once installed, the fuel 

consumption characteristics of power generation equipment cannot be changed ex post. Productivity 

improvements in electricity production then require investing in the newest equipment that is 

available on the market: without investment productivity improvements can simply not be realised. 

 However, electricity producers are risk-averse. So, investing in a piece of equipment with a 

given fuel efficiency, exposes them to variations in production costs caused by fluctuations in fuel 

prices. Likewise, capital costs can fluctuate. Because investment is irreversible, electricity producers 

need to look ahead, and invest sooner rather than later if the future seems very uncertain, given the 

demand for electricity they are facing. In that case they would want to change their equipment 

portfolio in favour of vintages with relatively certain consumption characteristics (i.e. the vintage one 

can invest in now or in the very near future). 

 Using this vintage portfolio model, we distinguish between eight broad technology families, 

i.e. coal, gas, nuclear, hydro, biomass, bio-waste, wind and photovoltaic generation. We introduce 

production targets for renewables, as well as peak- and base-load distinctions between technology 

families. Moreover, we allow for uncertainty in demand by specifying different demand scenarios 

with different probabilities of being realised. We link uncertainty surrounding the cost of an 

investment program over a fixed planning period of 30 years, to uncertainty about fuel price growth 

and uncertainty about the development of fuel- and capital-saving technical change during that 

planning period. By investing in the newest vintages of each technology and formulating production 

plans for the entire vintage capital stock, electricity producers can control aggregate uncertainty. 

Because production technologies are clay-clay, changes in the capital stock only come about through 

investment and disinvestment at the margin: the room to manoeuvre is limited in a vintage setting, as 

it is the case in reality. 
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 We have performed a number of simulation experiments. We find that in the base-run without 

any risk aversion, carbon emissions in the UK electricity sector range from about 150 MtCO2 at the 

beginning of the planning period to 350 MtCO2 at the end of the planning period. We then increase 

the degree of risk aversion, and find that expected costs will increase, whereas the expected variance 

of the expected costs of the entire vintage investment program will decrease. The corresponding 

standard deviation as a fraction of the expected costs also decreases, but less and less so for increasing 

values of the degree of risk aversion. As in optimum portfolio theory, we find that the relation 

between the costs of the entire investment program and the corresponding variance exhibits 

decreasing returns to variance: a larger variance generates a less than proportionally higher rate of 

return in ordinary portfolio theory, and in our case a less than proportionally smaller expected cost of 

the investment program. We find that changes in fuel price growth variances or technological 

variances have the expected effect. Increased variance with respect to some technology family 

reduces investment in that family, while increased risk aversion reduces fluctuations in investment 

over time. 

We find that with increased risk aversion, electricity production becomes more diversified 

over technologies to such a large extent that carbon emissions would be significantly reduced, mainly 

by switching towards nuclear energy production, rather than renewables. In an experiment where we 

introduce a cap on CO2 emissions, nuclear energy turns out to be the “saviour of last resort”, but also 

gas increases in importance. When we “punish” nuclear energy production by increasing its 

technological variance we find that gas and coal take over, rather than renewables. We also find that 

the anticipation of a switch towards another technology in the future makes producers want to invest 

less in that technology now and more in a substituting technology. In this way, they can benefit more 

from the cumulative nature of (ongoing) embodied technical change at the moment they will actually 

execute the switch. Nonetheless, the fact that gas and coal will take over from nuclear energy in this 

case, suggests that, given the data we have been able to use, none of the renewables is strong or 

promising enough26 to take over from nuclear energy or coal. This will only occur, when initial costs 

are lower or when technological uncertainties surrounding renewables are reduced, or both.  

 

 

 

 

 

 

 

                                                      
26 Note that some of the renewables such as hydropower would be advanced enough to take up a 
larger share of electricity production; however, hydropower is severely constrained through 
geographical feasibility. 
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Appendix A:  Irreversible Investment and Capital Cost Adjustment in the Context of a Finite 

Planning Period 

 

As we have assumed a finite planning period, capital goods installed at the end of the 

planning period are used for shorter periods of time than those installed at the beginning of the 

planning period, ceteris paribus. Hence, in terms of total costs, fuel costs will have a relatively large 

impact on vintages installed in the beginning of the planning period while capital cost will have a 

relatively large impact on vintages installed at the end. Of course, this depends on the notion that all 

capital costs have to be borne at the moment of installation. This is legitimate in case of an infinite 

lifetime of equipment (and hence an infinite planning horizon) and if the interest rate matches the 

discount rate. For, in the latter case, the present value of all interest and depreciation charges adds up 

to total initial investment outlays. We can turn this result around, and simply assume that the total 

present value of interest and depreciation charges over the remaining part of the planning period for a 

vintage installed at some point in time during the planning period will represent the relevant (as 

opposed to total) capital costs associated with the vintage under consideration. This assumption 

would remove the bias against installing relatively capital-intensive equipment at the end of the 

planning period.  

To show how this would work, assume that the rate of interest equals the rate of discount and 

is given by ρ , whereas the rate of exponential decay is δ . Then, if depreciation at historic cost 

prices has its impact at the end of a period, while interest payments also have to be made at the end of 

a period, we can write the present value of the total flow ),( θTΨ  of interest and depreciation 

charges for a one dollar outlay on investment at time T  up to and including time T≥θ as: 
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where )1/()1( ρδ +−=a . Using (A.1), we find that: 
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For ∞→θ , we find that 1),( →Ψ θT . For investment just after the planning period has ended, i.e. 

for 1+= θT , we find that 0),1( =+Ψ θθ . 
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Appendix B: Variance Calculations 

 

We can obtain equation (9) by noting that the expected forecasting error of the present value 

of an investment program associated with technology family f , i.e. PVf, will be given by: 
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where f
t

f
t

f
t

f
t

tf
t YPea ⋅⋅⋅Ψ⋅= ⋅− κθ

ρ ~~
,  and f

tv
f

v
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t
tf

tv XQeb ,,
~~ ⋅⋅⋅= ⋅− ϕρ . Again, the variables with a 

tilde represent the expected values of these variables.  

It should be noted that equation (B.1) can be rewritten as: 
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Except for the final term on the RHS of (B.2), the forecasting error in the present value of 

investment and operating costs for technology family f  depends on a number of terms that themselves 

depend just on t. However, the last term of the RHS of (B.2), i.e. ��
= =

⋅
θ

ϕ

0

ˆ,

0
,

t

f
v

t

v

f
tv Sb , can be rewritten as 

a sum of terms that also depends on t only. In that case it is relatively straightforward to calculate the 

variance of 
fPVε .  

To show this, we first have to rewrite ��
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f
tv Sb , as stated above. Dropping the 

unchanging superscripts f and ϕ̂ , it should be noted that this sum can be re-organised in a tabular 

form as shown in Table B.1. From this Table one can immediately see that the sum of all the elements 

in a given row can be expressed as a function of t only, since for any row t we must have that the sum 

of the elements it contains is equal to �
=
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θ

tv
vtt bS , . Consequently, the sum over all elements can be 

written as � �
= =

⋅
θ θ
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Table B.1 

 

Defining  �
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t bb ,2  , we find that the forecasting error of the expected 

present value of the variance adjusted costs of the investment (and production) program per 

technology family f  is given by:  
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Using the same notation as in equation (9) in the main text, we define 

f
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where, as before, K  is the set of stochastic variables for all technology families, i.e. 

}ˆ,ˆ,ˆ,ˆ{ ϕκ QPK = , and k represents the individual elements of this set. The corresponding forecasting 

error for the investment and operating costs over the entire technology family portfolio would consist 

of the sum of (B.4) over all f, in which case we get (B.5):  
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Taking the expectation of ( )2PVε , we find that: 

v\t 0 1 2 3 .. θ  

0 b0,0.S0 b0,1.S0 b0,2.S0 b0,3.S0 .. b0,�.S0 

1 0 b1,1.S1 b1,2.S1 b1,3.S1  b1,�.S1 

2 0 0 b2,2.S2 b2,3.S2  b2,�.S2 

3 0 0 0 b3,3.S3 .. b3,�.S3 

.. .. .. .. .. .. .. 

θ  0 0 0 0 0 b,�,�.S� 
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Under the assumption that the individual forecasting errors of all the stochastic variables are serially 

uncorrelated, whereas the contemporaneous co-variance of two different stochastic variables (indexed 

by {f1,k1} and {f2,k2}) is constant and given by 2,2
1,1
kf

kfσ , it follows that the expectation part of (B.6) 

can be written as 2,2
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t ttSSE σ⋅=⋅  , which implies that (B.6) van be 
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Since our main purpose is just to illustrate the principles involved, we have assumed that all 

co-variances between different variables are equal to zero in order to simplify matters as much as 

possible. Hence,  only the variances of the stochastic variables are assumed to be non-zero. This can 

easily be implemented by means of a slight modification of (B.7): 
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Appendix C: Data Used 27 

 

Data for the first two categories (initial costs and parameters and emissions) have been taken 

directly from Anderson and Winne (2004) and have only been rescaled in order to make the 

magnitudes match. The rest of the data mainly comes from the DTI (2006) or is calculated from the 

data given there.  

The fuel price growth rates are calculated for the period from the 3rd quarter of 2004 up to the 

3rd quarter of 2005, where the source is again the DTI data for coal, gas and oil28. Due to lack of data, 

an average of international uranium prices has been used from the Energy Information 

Administration29.  

The growth rate of investment prices is assumed to be relatively low compared to fuel price 

growth and constant across technologies because there were no consistent estimates available. It 

seems reasonable to do that because differences in rates of change usually arise due to differences in 

technological change, which is already accounted for in this model and because of differences in 

government subsidies and taxes, which are not considered at this point.  

Fuel-saving and capital-saving rates of technical change have been computed from the 

changes in fuel use per unit of electricity produced and the changes in the capital output ratio. These 

in turn have been derived from the DTI data, which account accurately for fuel use, power generation 

by technique and capacity installed30. 

 The (co-)variances of the rates of technical change are based on the time series of growth 

rates from the same source. Further data concern demand, which has been increasing at a rate of 0.8% 

on average extrapolating from the last five years. For the high demand scenario, demand growth is 

taken to be above average. The low demand scenario is associated with a higher probability of 

occurrence (70%). In addition, the discount rate is equal to 7.5%.  

                                                      
27 Investment price co-variances could not be estimated, which is why they are taken to be stable 
across and within technology families, growing at a common rate with constant variance.  
28 http://www.dti.gov.uk/energy/inform/energy_prices/tables/table_331.xls 
29 EIA, http://www.eia.doe.gov/emeu/international/electricityother.html 
30 (http://www.dti.gov.uk/energy/statistics/source/electricity/page18527.html, May 2006) 
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Table C.1: Data Set (from Anderson and Winne (2004), complemented by data taken from 
http://www.dti.gov.uk/energy/statistics/ May 2006).
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