
PALSAR 50 m Mosaic Data Based National Level Biomass
Estimation in Cambodia for Implementation of REDD+
Mechanism
Ram Avtar1,2,3*, Rikie Suzuki2, Wataru Takeuchi1, Haruo Sawada1

1 Institute of Industrial Science, The University of Tokyo, Meguro-Ku, Tokyo, Japan, 2 Research Institute for Global Change, Japan Agency for Marine-Earth Science and

Technology (JAMSTEC), Yokohama, Japan, 3 United Nations University Institute for Sustainability and Peace (UNU-ISP), Tokyo, Japan

Abstract

Tropical countries like Cambodia require information about forest biomass for successful implementation of climate change
mitigation mechanism related to Reducing Emissions from Deforestation and forest Degradation (REDD+). This study
investigated the potential of Phased Array-type L-band Synthetic Aperture Radar Fine Beam Dual (PALSAR FBD) 50 m
mosaic data to estimate Above Ground Biomass (AGB) in Cambodia. AGB was estimated using a bottom-up approach based
on field measured biomass and backscattering (so) properties of PALSAR data. The relationship between the PALSAR so HV
and HH/HV with field measured biomass was strong with R2 = 0.67 and 0.56, respectively. PALSAR estimated AGB show
good results in deciduous forests because of less saturation as compared to dense evergreen forests. The validation results
showed a high coefficient of determination R2 = 0.61 with RMSE = 21 Mg/ha using values up to 200 Mg/ha biomass. There
were some uncertainties because of the uncertainty in the field based measurement and saturation of PALSAR data. AGB
map of Cambodian forests could be useful for the implementation of forest management practices for REDD+ assessment
and policies implementation at the national level.
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Introduction

Forests play an important role in global carbon cycling, as they

are potential carbon sinks and sources for atmospheric CO2 [1],

[2]. Tropical forests store about 40% of the terrestrial carbon [3].

According to the FRA (2010) [4], the net change in global forest

area was estimated to be 25.2 million ha per year for 2001–2010

and 28.3 million ha per year for 1990–2000. The Intergovern-

mental Panel on Climate Change (IPCC) has pointed out that

reducing and/or preventing deforestation is the best possible

mitigation option for climate change. Adopting afforestation and

reforestation with the Clean Development Mechanism (CDM)

under the Kyoto Protocol is not enough to mitigate climate change

because deforestation releases more Green House Gases (GHGs)

than afforestation and reforestation absorption. Forest conserva-

tion is only one of many possible options by which permanent

land-use change may be avoided [5]. Reducing Emissions from

Deforestation and forest Degradation (REDD+) mechanism avoids

emissions of carbon into the atmosphere by conserving existing

carbon stocks. The basic idea of REDD+ is to reward individuals,

communities, projects and countries that reduce GHG emissions

from deforestation [6]. REDD+ can promote a range of

sustainability goals such as climate change mitigation, biodiversity

conservation, sustainable use of forest and forest products, better

livelihood for local peoples etc. [7]. Implementation of REDD+
mechanism require effective biomass and deforestation monitoring

systems that could provide consistent results with reproducibility,

and can be implemented at the national level [8]. Moreover, forest

biomass information is useful for REDD+ carbon accounting and

trading carbon credits [9]. Forest biomass information is also

useful to understand efficiently the global carbon cycle and

ecosystem processes, as well as to know how carbon stocks vary in

relation to environmental conditions and human land use activities

[10]. Forest carbon pools consist of trunks, branches, leaves, litter,

dead wood, roots and soil carbon. However, most studies have

focused on above ground biomass (AGB) because this is relatively

large pool and other carbon pools can be calculated with simple

equations [11].

There are various methodologies for biomass estimation but no

current methodology presents a clear view on how carbon pools

and their fluxes should be reported and what the accuracy and

uncertainty of biomass monitoring might be. Therefore biomass

mapping has become an urgent need to assess and produce data

on forest carbon stocks and the change in these stocks at a national

level [12]. A recent biomass map by Saatchi et al., (2011) [13]

shows uncertainties of about 30–50% in Indo-China countries.

Estimation of tropical forests biomass has been studied both with

the optical and Synthetic Aperture Radar (SAR) data. Table 1

summarizes some previous studies related to forest biomass

estimation.

The most accurate way of calculating biomass is destructive

sampling and forest inventory data using allometric equations.

However, these traditional techniques are often time consuming,
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labor intensive, difficult to implement, especially in remote areas,

and they cannot provide the spatial distribution of biomass in large

areas. Moreover, this method cannot provide historical informa-

tion about the forest if no forest inventory data exists [25], [41].

Therefore, remote sensing data supplemented with forest inven-

tory data can provide cheap and fast estimation as well as

historical information about forest biomass. Most of the remote

sensing techniques are based on optical and synthetic aperture

radar (SAR) systems. The disadvantages of optical sensors are not

related to plant structural parameters, availability of cloud-free

images in tropical countries, and a low saturation level for spectral

bands and various other vegetation indices [42]. Therefore,

dependency on SAR data for biomass estimation has increased

because SAR can provide data without the limitations of clouds

and solar illumination. The high penetration capability of SAR

allows more information extraction about plants structural

parameters for improved biomass estimation [43], [44], [45].

The successful launch of the Advanced Land Observing

Satellite’s (ALOS) PALSAR in 2006 has increased the potential

to use radar to measure biomass, as this is the first long-wavelength

Table 1. Previous studies related to forest biomass estimation.

No. Authors Study Area Methodology Data used

1 Sader et al., 1989 [14] Luquillo Mountains, Puerto
Rico

Normalized Difference Vegetation Index
(NDVI)

Landsat MSS and TM, Simulator,
airborne multispectral scanner

2 Beaudoin et al., 1994 [15] Landes Forest, France Adapted theoretical model P-band SAR airborne

3 Rauste et al., 1994 [16] Freiburg, south-east Germany;
Ruotsinkyla, Finland

Linear regression analysis AIRSAR C,L,P band

4 Brown et al., 1995 [17] Rondonia State, Southwestern
Brazilian Amazon

Allometric equation based on destructive
sampling approach

Field measurement

5 Imhoff, 1995 [18] Hawaii Volcanoes National
Park

Multi polarization (HH, HV, VV) radar
backscatter (s) and polynomial
regression model

NASA/JPL Airsar data with C, L, and P
band

6 Harrell et al., 1997 [19] South – eastern USA Multiple regression analysis SIR-C

7 Luckman et al., 1998
[20]

Tapajos, Para state and Manaus,
Amazonas state, Brazil

Forest backscatter model JERS-1 SAR L band

8 Steininger, 2000 [21] Bolivia and Brazil TM band 3,4,5 validated with allometric
equation

Landsat TM

9 Austin et al., 2003 [22] New South Wales, Australia Linear regression analysis JERS-1 SAR L band

10 Santos et al., 2003 [23] Tapajos River region, Para state,
Brazil

Regression models (logarithmic and
polynomial function)

AeS-1 SAR P- band

11 Foody et al., 2003 [24] Manaus (Brazil), Danum Valey
(Malaysia) and Khun Khong
(Thailand)

vegetation indices, complex band ratios
complemented with multi-linear regression
and neural networks method

Landsat TM

12 Lu, 2005 [25] Eastern Brazilian Amazon: Altamira,
Pedras, and Bragantina

LandsatTM bands, vegetation indices, band
ratios, image transform (e.g. principal
component analysis, Tasseled cap)

Landsat TM

13 Kuplich et al., 2005 [26] Manaus and Tapajos forests,
Brazil

Radar backscatter (s) and GLCM texture
based allometric equations

JERS-1 SAR image with L band

14 Watanabe et al., 2006 [27] Temperate Coniferous forests Multi-linear regression PALSAR

15 Sales et al., 2007 [28] Rondonia State, Southwestern
Brazil

Stem volume – AGB equation and
kriging method

Field data (RADAMBRASIL database)

16 Hajnsek et al., 2009 [29] Mawas and Sungai Wain,
Kalimantan, Indonesia

RVoG model and inversion of
dual-polarization

Airborne multi-band (C, L, P, X band)
and multi-polarization (PolInSAR)

17 Mitchard et al., 2009 [30] Africa Regression modelling PALSAR

18 Lucas et al., 2010 [31] Queensland, Australia Regression modelling PALSAR

19 Sun et al., 2011 [32] Boreal forests of Howland,
Maine (US)

Multi-linear regression analysis LVIS and PALSAR

20 Sandberg et al., 2011 [33] Hemiboreal forest, Sweden Regression modelling L-band and P-band SAR data

21 Saatchi et al., 2011 [13] Tropical forests Regression modelling GLAS, MODIS, SRTM and QSCAT

22 Englhart et al., 2011 [34] Tropical forest on Central
Kalimantan, Indonesia

Regression modelling TerraSAR-X and PALSAR

23 Mitchard et al., 2011 [35] Central Africa (central Cameroon) Regression modelling PALSAR

24 Cartus et al., 2012 [36] Northeastern United States Water-Cloud model PALSAR

25 Mutanga et al., 2012 [37] South Africa Regression modelling WorldView-2

26 Carreiras et al., 2012 [38] Guinea-Bissau (West Africa) Regression modelling PALSAR

27 Hame et al., 2013 [39] Laos Regression modelling and probability method PALSAR and AVNIR-2

28 Suzuki et al., 2013 [40] Boreal forests in Alaska Regression modelling PALSAR

doi:10.1371/journal.pone.0074807.t001
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(L-band, 23-cm wavelength) SAR satellite sensor to have the

capability of collecting single, dual, full and Scan-SAR mode with

cross-polarized (HV, horizontal-transmit, vertical receive) and co-

polarized (HH, horizontal-transmit, horizontal receive; VV,

vertical-transmit, vertical receive) data. The HV polarization is

useful because it interacts with trees and produces a strong

response [35]. Various studies have analyzed the retrieval of AGB

using radar data in tropical regions [30], [46], [47]. These

methods are mostly based on empirical or semi-empirical

relationship between radar backscatter and ground based data.

Longer wavelengths SAR have proven to be more useful because

of the increased backscatter range with changing biomass [48],

[49], [50], [43]. These biomass estimations are valid up to a

certain threshold where saturation occurs [51], [30]. Mitchard

et al., 2009 [30] predicted above ground biomass in tropical

Savanna forest of Africa with a saturation of PALSAR backscatter

around 150 Mg/ha which is more than 100 Mg/ha predicted by

Watanabe et al., 2006 [27]. Recently, Suzuki et al., 2013 [40] has

also used PALSAR data to estimate biomass of boreal forests of

Alaska and no obvious saturation was found up to 120 Mg/ha. In

general, SAR saturation levels depend on the frequency of SAR

systems as well as forest structure. The sensitivity of SAR decreases

with the increase of biomass in dense forests [18], [52]. Most of the

recent studies are focused on use of L-band SAR data (PALSAR)

to estimate biomass because of high penetration capability [35],

[36], [38]. However, there is no comprehensive study that uses

PALSAR 50 m mosaic data to generate a national level biomass

map. Therefore this study was carried out to estimate national

level biomass based on a bottom-up approach to support REDD+
mechanism in Cambodia.

Study area

Cambodia is located in Southeast Asia between 10u–15uN
latitude and 102u–108uE longitude, covering about 181,037 km2

Figure 1. ALOS/PALSAR 50 m mosaic 2009, (Red: HH, Green: HV, Blue: HH/HV) data and locations of the inventory data in different
forest types (a) evergreen (b) mixed and (C) deciduous forests of Cambodia.
doi:10.1371/journal.pone.0074807.g001

PALSAR Based Cambodian Forest Biomass

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e74807



of area. Cambodia shares its border with Vietnam to the east,

Thailand to the west, Lao P.D.R. to the north and Gulf of

Thailand to the south. Cambodia is a country covered mainly by

extensive plain lands and the Tonle Sap (Great Lake), which

crosses the country from the north to the south. Topographically

Cambodia is divided into two parts: (i) the central low lying or the

central plains and (ii) the mountainous ranges. Central plains,

consisting mainly of the alluvial plain of Mekong River and the

Tonle Sap, cover about three quarters of the country’s area [53].

Cambodia is a tropical country with two distinct seasons: the

dry season from November to April and the rainy season from

May to October. The mean annual precipitation depends on the

region and ranges from 100 to 300 cm [54], [55], [56]. The

heaviest rainfall, over 300 cm per year, occurs along the western

coastal lowland area. Relative humidity ranges from 65–70% in

January and February to 85–90% in August and September.

Cambodia’s average temperature ranges from 20u to 35uC. April

is the warmest month, when the temperature can rise above 38uC
and January is the coldest with temperature around 22uC [53].

Recent FRA (2010) data shows that Cambodia has the highest

deforestation rate among Indo-China countries [4]. Logging

activities, population growth, urbanization, and agricultural

expansion have been the primary reason for Cambodia’s forest

loss [53], [57]. Cambodia signed United Nations REDD+
mechanism in 2009, therefore the study of forest biomass is

necessary for REDD+ implementation. Figure 1 shows a R:G:B

colour composite of PALSAR 50 m FBD data.

Methodology

a. Field data
Forest inventory data was collected with the help of Forestry

Administration (FA) of Cambodia. We collaborated with FA to

collect data in November 2010 and January 2011 with plot sizes of

30 m660 m. Square plot design was used to facilitate pixel

sampling based on satellite data to reduce position error. A

systematic random sampling design was applied for the purpose of

field data collection based on forest types with relatively

homogeneous ecological conditions (i.e. topography, slope,

distance from water source, soil types). Forest inventory param-

eters (Diameter at breast height (DBH), tree height, species, tree

density and forest types) were collected from seventy nine plots.

The tree diameter was measured at 1.3 m height above the

ground using DBH tape with 1cm accuracy. The tree height was

measured with the vertex hypsometer for all open trees with good

visibility of the top and was estimated when it was not possible to

see the top of the tree. Most sampling plots were selected in the

plain area to minimize topographic effects of SAR data. The

sampling plots were located using GPS (Garmin 62CSx). A total of

seventy nine plots data were analyzed. Fifty one plots were used for

the MLR model development and 23 plots were used for model

Table 2. Allometric Equations.

No. Author Allometric equation

1 Kiyono et al., 2010 [54] Leaf biomass (kg) = 173*(BA0.938) Branch biomass (kg) = 0.217*(BA1.26)*(D1.48) Stem biomass (kg)
= 2.69*(BA1.29)*(D1.35) BA is basal area and D is stem density

2 Kenzo et al., 2009 [59] Leaf biomass (kg) = 0.0442*(DBH1.67) Branch biomass (kg) = 0.0124*(DBH2.48) Stem biomass (kg)
= 0.0822*(DBH2.48)

3 Brown et al., 1997 [58] Biomass (kg) = (42.69–12.8*DBH+1.242*(DBH2))

doi:10.1371/journal.pone.0074807.t002

Figure 2. Incident angle based on slope and aspect image of SRTM-DEM data (a) and PALSAR terrain corrected image (b).
doi:10.1371/journal.pone.0074807.g002

PALSAR Based Cambodian Forest Biomass

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e74807



validation. Five plots were excluded from the analysis because the

location of the plots was near to the road as well as some

degradation activity. The AGB in kg for each tree was calculated

using the allometric equation as derived by Kiyono et al., (2010)

[54]. Basal area of the plot was also calculated based on the DBH

and tree density. Basal area (m2/ha) is defined as the cross-

sectional area of all the trees in the plot divided by the area of the

plot.

We used Kiyono et al., (2010) [54] allometric equations because

Anglesen (2008) [6] has noticed that country specific allometric

equation is better suited than using a global allometric equation.

Kiyono et al., (2010) [54] method is originally designed for

Cambodian forest and therefore there are less uncertainties as

compared to other allometric equation. We also compared the

Kiyono et al., (2010) allometric equation based biomass estimation

with the Brown (1997) [58] and Kenzo et al., (2009) [59]

allometric equations (Table 2) based biomass estimations. We

found that the Brown (1997) [58] allometric equation based

biomass estimation showed overestimation and Kenzo et al.,

(2009) [59] showed underestimation. The biomass value obtained

from each tree with the Kiyono et al., (2010) [54] allometric

equation were summed and normalized by the area of the plots to

produce the AGB in Mg/ha. In this biomass estimation, we have

only considered trees with $10 cm DBH, because they likely

represent most of the woody mass of the plots.

b. Satellite data
Land use/land cover map based on ASTER 2005 data [60],

SRTM-DEM data, Landsat ETM+2009, 2010 data were used for

selection of sampling sites. PALSAR FBD 50 m mosaic data was

downloaded from Japan Aerospace Exploration Agency (JAXA).

We have used dual polarization PALSAR data with HH and HV

polarization. We have created R:G:B color composite image (HH:

red, HV: green, and HH/HV: blue) (figure 1). The processing of

PALSAR data was started with the terrain corrections using

Shimada 2010 [61] methodology to minimize the topographic

effects of PALSAR in mountainous areas. The PALSAR 50 m

mosaic data were ortho-rectified using the SRTM DEM 90 m to

correct the topography. The SRTM DEM with 90 m pixels were

resampled to 50 m using bi-linear interpolation. Raster grids of

resampled data was aligned with PALSAR 50 m mosaic data to

minimize location error. Later on incidence angle was calculated

Figure 3. Flow chart of the methodology.
doi:10.1371/journal.pone.0074807.g003
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based on slope and aspect of SRTM data [62]. Figure 2a and 2b

shows the incident angle image based on slope and aspect of

STRM data and terrain corrected PALSAR data respectively.

Slope correction results shows that terrain correction methodology

was not effective in high sleep mountainous area as compared to

low mountainous areas. The digital number (DN) of PALSAR

data was converted to the normalized radar cross section (NRSC

or so) using the following equation (1) [63].

so~10 x log10 DN2
� �

zCF ð1Þ

where, so is backscattering coefficient and CF is the calibration

factor and its value for PALSAR dual polarimetric data is 283.

We have not considered the climatic conditions of PALSAR 50 m

mosaic data because different scenes were acquired on different

date to make a mosaic.

c. Statistical Analysis
Multi-linear regression (MLR) analysis using the stepwise

forward method was conducted relating the so of PALSAR to

the corresponding field calculated biomass. It was used to analyzed

the relationship between the dependent variable (field measured

forest biomass) and the independent variables (PALSAR so). The

Figure 4. PALSAR 2009 so HH, HV and HH/HV plotted against basal area (a, b), stem density (c, d) and biomass (e, f).
doi:10.1371/journal.pone.0074807.g004
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size of the sampling window was 363 pixels. We calculated

average value of 363 pixels of PALSAR data around the field

based sampling points to minimize spatial variability and satisfy

the normal distribution based on spatial homogeneity. MLR

model were developed based on field measured biomass and

PALSAR backscatter. This MLR model was applied to the

PALSAR 50 m mosaic data to estimate the biomass of all

Cambodia. Finally validation was used to evaluate the accuracy of

the model by comparing PALSAR estimated AGB to the field

derived AGB. The detailed methodology is shown in the flow

chart (figure 3).

Results and Discussion

so HH, HV and HH/HV is plotted against basal area, stem

density and biomass respectively. Figure 4 a and b represents the

relationship between PALSAR so (HH, HV) and (HH/HV) with

respect to basal area. Field measured basal area shows a significant

relationship with the so HV (R2 = 0.67) as compared to so HH

(R2 = 0.05). Figure 4 c and d represents the relationship between

PALSAR so (HH, HV) and (HH/HV) with respect to stem

density. Field measured stem density shows the poor relationship

with the so HV (R2 = 0.32) and so HH (R2 = 0.06) respectively.

This is mainly because tree density depends on the forest type, tree

species and site conditions. Figure 4d also shows poor relationship

between su HH/HV with tree density (R2 = 0.3). Figure 4e shows

the relationship between PALSAR so (HH) and (HV) with field

estimated biomass. Field measured biomass shows a significant

relationship with the so HV (R2 = 0.67) as compared to so HH

(R2 = 0.05). High so HH in low biomass region was noticed

because of the high surface scattering from the plots covered by

dry leaves and grasses, which increases the surface roughness. The

reason why, so HV polarization produces better correlation than

so HH is because of the volume scattering in forest areas enhances

Figure 5. PALSAR derived AGB (Mg/ha) map of Cambodia (a) LULC map of the area (b).
doi:10.1371/journal.pone.0074807.g005

Figure 6. Relationship between PALSAR predicted biomass
plotted against field measured biomass.
doi:10.1371/journal.pone.0074807.g006
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the cross-polarization returns with the increase in biomass. so HV

is less influenced by soil and vegetation moisture than so HH [64].

VanZyl (1993) [65] also noticed that HV is less influenced by

topography. Other studies also reveal that the so HV is more

sensitive to forest biomass compared to so HH [66], [67], [30].

We have observed different backscattering properties from the

same biomass region (Figure 4e at biomass 100–150 Mg/ha)

Figure 7. Cambodian AGB map based on PALSAR 50 m mosaic data.
doi:10.1371/journal.pone.0074807.g007

Figure 8. Biomass distributions with forest cover types of Cambodia.
doi:10.1371/journal.pone.0074807.g008
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because of the difference in canopy and their distribution.

Evergreen forests with multi-story tree structure shows high

backscattering as compared to deciduous forests of the same

biomass class. A loss in sensitivity of PALSAR signal appeared to

occur at approximately 150–200 Mg/ha biomass (Figure 4e).

Figure 4f shows the strong relationship between PALSAR su HH/

HV with biomass (R2 = 0.56). Therefore, polarization ratio is a

useful parameter for biomass estimation. These results have a

higher saturation point and less noise as compared to previous

studies using PALSAR HV data [27], [30]. A similar saturation

point using PALSAR HV data was noticed by Mitchard et al.,

(2011) [35] in the Savanna forest of central Africa. We may have

achieved this range of saturation and more accurate results

compared to previous studies because of our access to good

quality, well geo-coded forest inventory data for a relatively flat

area.

The MLR Model for biomass estimation was developed using

so HV and so HH/HV because HV and HH/HV shows strong

correlation with biomass. so HH data was not used for regression

modelling, since its dependence on biomass was weak. The

resulting regression model is given in equation 2. so HV is

dominated by volume scattering from woody elements of trees, so

that HV is strongly related to AGB [68]. For the HH polarization,

ground conditions can affect the biomass backscattering relation-

ship, because HH backscatter comes mainly from trunk-ground

scattering [69].

Y Biomass Mg=hað Þð Þ~752:95z 44:4 x soHVð Þ{

8:73 x soHH=HVð Þ
ð2Þ

where so is backscattering coefficient in dB for different

polarization.

The MLR model was applied to the PALSAR 50 m mosaic

data to generate a national level biomass map. Figure 5a shows the

biomass map of the Cambodia. The biomass values were classified

into 8 classes. The deforested area shows a zero biomass value.

Figure 5b shows the land use land cover (LULC) map of the same

biomass region. Comparing the biomass map (Figure 5a) with the

LULC map (Figure 5b) shows the high biomass region

(.200 Mg/ha) mostly falling into the evergreen high and medium

low class of the LULC map. However, in the mountainous area

(northern part) the biomass map shows variation because of

topographic effects. The low biomass region (150–200 Mg/ha)

was mostly found in the mixed forest type and the lowest biomass

region (50–150 Mg/ha) was mostly found in deciduous forests.

The results from this study are preliminary, but it shows the

potential of freely available PALSAR 50 m mosaic data.

Figure 6 shows the validation results of PALSAR derived

biomass. The accuracy of PALSAR predicted AGB decreases as

the biomass increases because of the saturation of PALSAR signal.

It shows a significant coefficient of correlation R2 = 0.61. The

overall root mean square error (RMSE) for this data is 63 Mg/ha;

however RMSE decreases to 19 Mg/ha if only values below

100 Mg/ha are considered or down to 21 Mg/ha for values up to

200 Mg/ha. The high variation in errors are present in the high

biomass region i.e. .200 Mg/ha. We have predicted two types of

uncertainties a) calculation uncertainty of biomass from field data

using allometric equation because of the lack of species-specific

allometry, small plot sizes and the exclusion of small trees

(,10 cm) DBH and b) saturation of PALSAR signal at high

biomass regions and topographic effects.

Figure 7 illustrates the national level AGB distribution, which

indicates high heterogeneity in AGB class. The high AGB region is

mainly found in Ratnakiri, Mondolkiri, Kampong Thom and Koh

Kong province of Cambodia. Figure 8 summarizes the distribution

of AGB in various types of forests of Cambodia. Evergreen forests

have the highest AGB in the .200 Mg/ha class, whereas

deciduous forests have in the 100–150 Mg/ha class. Cumulatively,

the largest AGB stock is in evergreen forests followed by deciduous

forests. The high AGB of evergreen dense forests may be

associated with good environmental factors such as relatively

better water, soil and temperature conditions and less intensity of

human activities. Some sites in evergreen forests of Kampong

Thom province with deforestation may be because of high human

activity in the flat area with high AGB forest. The majority of

Cambodia’s forests fall in a range of 100–200 Mg/ha (,52%) and

only 20% of total forest area were ,100 Mg/ha. About 28% of

the total Cambodia’s forests have a value .200 Mg/ha, which is

highly significant from the climate change mitigation point of

view. Conservation and management of these high biomass forests

should be a high priority for increasing the carbon stock as well as

for biodiversity conservation.

We also compared our results with Sato, (2011) [70] who

estimated biomass values generated based on 100 permanent

sampling plots (PSPs) in evergreen and deciduous forests of

Cambodia. Table 3 shows the comparison of forest carbon stock in

Cambodia based on PALSAR 50 m mosaic data and PSPs based

biomass estimation. PALSAR estimated value of total AGB of

evergreen forests to be about 3476104 Tg-C, which is close to

values estimated by PSPs method. PALSAR estimated value of

carbon stock in deciduous forests is about 238671 Tg-C, which is

also close to the PSPs estimated carbon stock value. Therefore we

Table 3. Comparison of forest carbon stock in Cambodia based on PALSAR 50 m mosaic data and Sato T., 2011 calculated.

Forest carbon stock in Cambodia based on PALSAR 50 m mosaic data

Forest types Forest area (km2) Total Carbon stock (Tg-C)

Evergreen forest 36,140.3 347.426104.2 (with 30% uncertainties)

Deciduous forest (It does not include mosaic
deciduous forest)

35,729.6 238.71671.6 (with 30% uncertainties)

Mixed forest 12,588.7 102.66630.8 (with 30% uncertainties)

Forest carbon stock in Cambodia estimated by Sato T., 2011 based on 100 PSPs

Evergreen forest 36,689 467.26291.5

Deciduous forest 46,921 158.26110.8

doi:10.1371/journal.pone.0074807.t003
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could say that the PALSAR 50 m mosaic generated biomass is

reasonable and can be used for further studies. However, a more

accurate biomass map is really needed for more accurate climate

change modelling.

The national level biomass map (Figure 7) will assist Cambodian

forestry administration, land managers, policy makers and civil

society to become better informed about the likely result of their

policies and program in reducing national GHG emissions from

land use change. The biomass map could also be used as an

additional tool for forest conservation and forest management

strategies of Cambodian government.

Conclusion

Biomass information is useful for calculation of amount of

carbon loss due to deforestation activity. In this study, a method

for estimating national level biomass map using PALSAR 50 m

mosaic data has been developed and evaluated. In this study

correlation analysis was used to assess the relationship of AGB and

other forest biophysical parameter measured from field data with

PALSAR 50 m FBD data. so HV and HH/HV shows good

correlation with forest biomass. A multi-linear regression model

approach was used to predict the biomass using field based

measurement and PALSAR backscattering. Our results showed

that most of the Cambodian forest (52%) falls into the 100–

200 Mg/ha biomass value. About, 28% of Cambodian forest falls

into biomass class .200 Mg/ha. The total biomass in evergreen

and deciduous forests show good synergies with 100 PSPs

estimated biomass, although the methodological approaches are

different. Such a national level biomass map is not very precise

and accurate but it can provide general information about biomass

distribution which is needed for forest management practices in a

cost effective way. PALSAR 50 m mosaic data shows saturation at

about 150–200 Mg/ha. The saturation problem of SAR data can

be overcome using polarimetric-interferometry SAR (PolInSAR)

technique or P-band SAR data. For more precise estimation we

must look forward for the P-band SAR or DESDynl satellite

system in the future.
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