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Abstract

In this paper a model for the formation of strategic alliances is studied. Innovation
results from the recombination of knowledge held by the partners to the collaboration,
and from the history of their collaboration. Innovation brings partners closer together,
while at the same time the repetition of partnerships fosters trust and helps improving
the outcome of each round of cooperation. A tension exists between innovating with
people I know in order to reduce uncertainty at the expense of the net benefit from our
joint effort, and innovating with strangers with whom the outcome of joint innovation
can be greater but at a larger risk of failure. This “organized proximity”, built
through the experience of cooperation, can be at the origin of strongly structured
networks of innovation, where agents’ relations focus on limited cliques of partners.
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1 Introduction

One of the long-standing legacies of Schumpeter (1934) is the belief that innovation was

a central aspect of a dynamic economy. Schumpeter was also pivotal in his view that

innovation consists largely of the recombination of existing knowledge. The practical force

of this idea is that if agents have access to more and a wider variety of knowledge or

information, this will foster innovation (see Weitzman, 1998; Olsson, 2000). Recently,

changes in the technological landscape have made this issue more important than ever

before. Several authors have noted that in many industries today the technologies both

being used and being produced involve technological expertise that covers a much broader

range of ‘disciplines’ than has hitherto been the case (see Powell et al., 1996, Grandstand

and Sjolander, 1990; Grandstand, 1996, Teece and Pisano, 1989). What this implies is

that types of knowledge necessary to innovate and compete successfully can lie outside

a firm’s main area of expertise. A now common way of coping with this problem is to

form an alliance with a firm that has the missing expertise. Inter-firm cooperation can

be extremely effective in increasing the circulation of tacit knowledge, and in creating

possibilities for a firm to acquire knowledge outside its boundaries. Consequently, these

cooperative agreements for R&D have grown dramatically in number since the 1970s.1

Nevertheless, cooperation is risky, in the sense that it is marked by uncertainty relative

both to the actual skills of the partner and to his reliability. (See Powell 1990, p. 318

for a discussion of risks.) Cooperation implies mutual knowledge and sharing of routines,

representations, ways of thinking and so on. In other words, it demands a proximity of

actors that has to be built through the experience of cooperation (Garcia-Pont and Nohria,

2002). Coriat and Guennif (1998) argue that, in a partnership, trust evolves as a result

of a “meaningful” repetition of interactions between the partners. They consider that

interaction “provides additional information and meaning about the partners’ behaviour”,

reducing uncertainty and establishing “a minimum of predictability in the behaviour of the

partners”. In that sense, trust construction and learning are strongly related (Sako, 1991;

Dodgson, 1996; Klos and Nooteboom, 2001).

Cooperation also needs the existence of an intermediary common ground between part-

ners, starting point of a common action. Galison (1999) shows that in experimental physics,

cooperation between theorists, experimenters and instrument makers is made possible by

the emergence of some sort of “creole”, an intermediary level knowledge specific to a given

pair of actors, that has been built through their repeated interactions.

This discussion suggests that in a variety of ways, after an interaction, assuming it was

successful, the two parties will find each other more attractive than they did before it. A

successful interaction will increase the partners trust in each others’ motives, and increased

awareness of each others’ skills. It will also have generated more common tacit knowledge

which improves communication. Powell et al. (1996) show that firms that have engaged in

partnerships in the past are more likely to engage in them in the future. This is a general

result. Roijakkers (2003) finds that if two particular firms have allied with each other in

the past, these two firms are more likely to have an alliance together in the future.

1See Hagedoorn (2001) for a review and discussion of this trend.
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But through cooperating, partners’ knowledge profiles will tend to move closer to-

gether, reducing their mutual attractiveness. Nooteboom (2004) assumes the proposition

“that ongoing interaction will yield a reduction of cognitive distance, or, in other words,

identification.” This is born out empirically: Mowery et al. (1998) find that “technolog-

ical overlap between joint venture partners after alliance formation is greater than their

pre-alliance overlap.” (p. 517). (See also Dyer and Nobeoka, 2000.) This makes future

cooperation easier. The cost, though, is that the increased similarity means that they can

have less to contribute to each other. In the extreme, if they become identical in what

they know, (or in their location in technology or knowledge space) there is no reason for

them to collaborate, no matter how much they trust each other and how smoothly they

can interact.

To model strategic technological alliances in their entirety is far beyond the scope of this

paper. Technological alliances can be very rich and varied, in character, motivation and

effect. But for our purposes we focus on a single aspect, namely the production of shared

knowledge, and how firms’ behaviour in this regard leads to the emergence of networks.

We have observed in the last decades a rapid emergence of a relatively new form of

organization, in which firm structures are built around networks. Networks differ from

markets and hierarchies in a variety of ways, but can be seen as depending on particular

types of interactions between pairs agents within the economy. (For a discussion see Powell,

1990.) Sustaining a network connection demands many of the same things as establishing

and sustaining a strategic alliance (trust, absence of opportunistic behaviour, familiarity

and so on). Thus a natural way to approach network formation is as a result of individuals

forming bilateral, non-market relationships.

There is now a growing literature in economics on network formation, but the majority

of it treats the problem in game-theoretic terms, looking for stable structures that emerge

from agents’s one-time decisions about whether to form links. The concern in this literature

tends to be whether the stable networks are efficient. (For a recent survey see Dutta

and Jackson, 2003.) This work tends not to address the evolutionary nature of network

formation and operation. The model developed in this paper continues work using another

approach, centred on the idea that agents are continually forming and breaking links with

each other, and that this ongoing activity is what underlies the networks that we observe.

Agents choose with whom to form a link (or activate an existing link) in order to achieve

some immediate goal. The repetition of these actions results in a network that emerges

and evolves over time. The aim here is to identify the properties of the structures and

behaviours that emerge (see for example Cowan et al. 2003; Kirman and Vriend, 2001; or

Plouraboué et al. 1998).

In this paper we incorporate effects of collaboration in a simple model of network forma-

tion. The goal is to understand network formation as the consequence of individual firms

creating bilateral alliances in which they innovate. Firms attempt to pool their knowledge

to create new knowledge, and the amount they can create is determined by the complemen-

tarities in their knowledge stocks. In addition, repeated interaction between a pair of firms

increases the probability of success, but at the same time can change partners’ abilities

to complement each others’ knowledge. By repeated alliance formation and dissolution a
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network structure emerges and continuously evolves. How this structure changes and how

the nature of the economy’s knowledge stock changes, in response to parameters governing

different parts of the process, are the issues that we explore.

2 The model

The dynamics of the model are simple: each period firms form alliances based on their

expectations of the amount of output attributable to any collaboration. An alliance having

formed, the firms pool their knowledge to create a joint knowledge endowment. Innovation

happens as recombination – the joint knowledge endowment serves as an input to knowl-

edge creation. When new knowledge is created, it is added to the respective knowledge

stocks of the two partners, and then the alliance is dissolved. This repeated pair formation

and dissolution generates a process of network formation and evolution.2

The population of agents is finite and denoted S = {1, . . . , n}. Each agent i ∈ S is
characterized by a knowledge endowment of several types of knowledge. This is represented

as a vector v (i) = (v1 (i) , . . . , v` (i)), where each element vm (i) represents the amount of

knowledge of type m = 1, . . . , ` held by agent i ∈ S. This representation permits us to
treat agents as located in an `-dimensional knowledge space. With this notation we can

turn to knowledge creation and allocation.

2.1 Knowledge production

There are many ways to characterize knowledge, none of them without its pitfalls. But

a representation of the innovation process should satisfy several minimal requirements.

Consider two individuals i and j who conduct innovation jointly. After innovation has

taken place, one would expect the following to be true: the knowledge amounts held by i

and j have increased; the knowledge “profiles” of i and j have changed; and the similarity

of the knowledge profiles of i and j (that is the relative distance between them in the

knowledge space) has fallen.

Operationally, each pair of agents (i, j) creates an amount of new knowledge determined

by a production function, and this amount is simply added to both partners’ existing

knowledge endowments. This process satisfies the three requirements just described.

Agents in a pair pool their knowledge to create a joint knowledge profile. This is done

through

vm (i, j) = (1− θ)min{vm (i) , vm (j)}+ θmax{vm (i) , vm (j)}, m = 1, . . . , `. (1)

Such a pooling of course remains virtual, as each of the partners remains the owner of

his own skills. Nevertheless, it permits a useful formalization: after having aggregated

2We have assumed here that agents are pursuing knowledge for its own sake. This is unrealistic in general
for firms, who pursue knowledge more generally for the sake of profits. To incorporate that explicitly in
the model adds significant complication, demanding a fully blown goods market with production and
consumption. We avoid that by this simplifying assumption, which, in an industry involved in rapid
technical change, will be behaviourally quite adequate.
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the individual endowments, the joint profile becomes the input of a knowledge production

function.

In Equation (1), θ is governed by the nature of the knowledge pooling which the knowl-

edge creation task demands. If it is possible to separate the sub-tasks in the innovation

process, the agents will specialize, each agent doing some sub-tasks, and bringing the re-

sults together at the end to create the complete innovation. Here, since specialization is

possible, the better econometrician will do the econometrics; the better theorist will do the

theory, and so on, and thus the pooled knowledge vector is the element-wise maximum of

the individual vectors: θ will approach one. By contrast, if the tasks are not separable,

and both partners must be involved in every sub-task, then the weaker partner will be

a bottleneck: the pooled knowledge vector will be the element-wise minimum, and θ will

approach zero.3

On this interpretation θ can be considered a measure of the taste for dissimilar partners.

Indeed if θ ≈ 0 then in any element m in which vm (j) < vm (i), agent j reduces the

effectiveness of i. The converse is true as well. In this case, agents will be driven to find

partners similar to themselves, as in that case they provide the least drag on each other.

In the extreme case they stay alone (this effect will be observed in the results below). By

contrast, if θ ≈ 1, agents look for partners whose endowments tend to complement their
own, since they can benefit from each others’ strengths. Implicitly, they search for partners

who are different from themselves in the sense of being good where they are bad.

The pooled knowledge vector serves as the vector of inputs to the innovation production

function. To formalize this, we use a standard constant elasticity of substitution production

function φ : R` → R+, with

φ (v (i, j)) =

"X
m

(vm (i, j))β
#1/β

. (2)

Parameter β is an inverse measure of the elasticity of substitution across knowledge types,

which is written as 1/ (1− β) . To see how it affects the type of partnerships wanted,

consider an agent with asymmetric profile (i.e. marked strengths and weaknesses) and

remark that φ is symmetric and homogeneous. In general this agent would like to find a

partnership such that the joint profile is more evenly distributed and so a higher isoquant

can be reached. How desirable this is varies with the degree of substitutability across

knowledge types. When β is small the agent is really eager to find a partnership and

many will suit him. By contrast, when β is close to 1, being evenly skilful becomes less

important as substitution between knowledge types gets easier. So less networking should

be observed.

3In the literature there is some disagreement about whether innovative success increases or decreases
with the cognitive distance of the partners. Mowery et al. (1998) find a U-shaped relationship; Nooteboom
(1999) argues for a similar conclusion. At the same time though, van Alstyne and Brynjolfsson (1996,1997)
and Peretto and Smulders (2002) and others assume that the relationship is monotonic, either increasing
or decreasing. With our formalism, this effect is parametrized, and explicitly linked to the nature of
the innovation task, and includes the possibility of a relatively complex relationship due to the multi-
dimensional nature of firms’ knowledge.
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2.2 Innovative success and experience

Finally, for knowledge creation, there is the issue of success. An innovation project may

fail, and the projected new knowledge may not be created. Here history is important

since project success is driven in part by familiarity of the partners, as discussed in the

introduction.

Define the probability that the next collaborative attempt of i and j is a success, given

they have already had t attempts, as πt (i, j) = πt (j, i) . This probability is determined

by their joint history, and captures the development not only of trust but also the ability

to work successfully together. We define γt (i, j) as a measure of their historical success.

Recent experiences will weight more heavily, so define

γt(i, j) =
X
1≤s≤t

ρt−sχs(i, j), (3)

where 0 < ρ < 1 is a discount factor, and χs(i, j) = 1 if i and j had a successful interaction

for their sth collaborative attempt and 0 otherwise. Given this definition of past success,

i and j form their beliefs about successful collaboration as an a priori probability πt (i, j)

that the collaborative attempt t+ 1 is a success. We define the success probability of the

first encounter between i and j, the lower bound of the success probability as π0 (i, j) = πL,

for all i 6= j, and assume that πt (i, j) is an increasing function of γt(i, j). Innovation is

always a risky activity, and so the maximum possible success probability (if partners have

an infinitely long perfect success record) is πH < 1. As there is no a priori obvious choice

for the functional form of the relationship between πt (i, j) and γt(i, j), and because we

would like the impact of γt(i, j) to be gradual, a simple linear form is posited.4 As

γt(i, j) ≤
X
1≤s≤t

ρt−s =
1− ρt

1− ρ
, (4)

an obvious upper bound to γt(i, j) is 1/ (1− ρ) . The functional form we assume for πt (i, j)

is then

πt (i, j) = πL + γt (i, j) (πH − πL) (1− ρ) , ∀t ≥ 1. (5)

Then the expected amount of knowledge potentially produced by a cooperation between i

and j can be expressed as

F (i, j) = πt (i, j) · φ(v (i, j)). (6)

This is simply the amount of knowledge produced in case of success multiplied by the

probability that the cooperation succeeds. (Thus agents are assumed to be risk-neutral.)

Operating in autarchy is assumed to have a success probability of πH (there is no issue of

learning to collaborate with myself). As a result the magnitude of πH − πL plays a central

4An exponential specification was also tried, but the effect of changes in γt(i, j) was too marked, though
similar behaviour could be seen to emerge. The linear form, on the other hand, produces smoother changes
in the aggregate statistics.
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role in a firm’s decision to operate in autarchy rather than collaborating. Given πH , a larger

baseline probability of failure in new born relationships (lower πL) will obviously imply a

stronger tendency for firms to conduct innovative projects in isolation. In the case where

learning is absent any collaboration has a probability of success equal to that of autarchy

equal to πH in each period (past interaction is irrelevant).

Rating potential partners according to Equation 6 is formally similar to the score ap-

proach used by Klos and Nooteboom (2001). However interpretations differ. In their model

the score is an increasing function of the profit the agent can potentially make as a result of

the transaction and his trust in the potential partner, where trust refers to “the intention

to honour agreements to the best of one’s ability” (p. 514). Thus there is a subjective

probability that the other party is not opportunistic which has an effect on preferences,

while at the same time a transaction actually never fails (so the objective probability that

the other party is opportunistic is actually zero). We abstract from the difficulties of deal-

ing with trust and simply consider πt (i, j) to be a measure of agents i and j’s ability to

work together, which increases with the past success of the relation.

If the innovation project is successful, and new knowledge is created, it is added to each

of the partners’ knowledge vectors. The general intuition is that as an agent uses knowledge

or is exposed to it, he will assimilate at least part of it, and thereby change the precise area

of his expertise. As the argument of the production function is the joint knowledge profile,

it is natural to let this joint profile also determine the type of knowledge produced.5 It is

assumed that the probability, conditional to the collaboration being successful, of the new

knowledge being of type m is

vm (i, j)P
m v

m (i, j)
. (7)

If the collaboration fails, both agents get 0.

The way the success probability of a collaborative attempt is up-dated is reminiscent

of the standard reinforcement learning model imported from psychology (cf. Hebb, 1949;

or Luce, 1959) and popularized among others by Erev and Roth (1995). In reinforcement

learning an agent chooses probabilistically within a finite set of strategies, based on a

cumulative (though slowly decaying) memory of the benefits collected by strategies at each

past chance. The propensity to choose a strategy is updated based on the payoff earned

when that particular strategy is used, and choice among strategies is made based on their

propensities. Thus strategies that have done well in the past are chosen more frequently in

the future. In the present paper agents learn to collaborate on the basis of their historical

success, as in reinforcement learning. The logic is different, however, as agents do not

choose probabilistically among different partners nor do they actually learn from history

the payoff associated with particular partners. Rather they are able to calculate accurately

the success-payoff, based on current information. What is updated, depending on past

5We have explored other variants in which a share of the new knowledge is allocated according to the
joint profile to a category common to both participants, while the remaining part is allocated according
to each partner’s profile. As long as the share of new knowledge allocated according to the joint profile is
not negligible, the results remain qualitatively unchanged.
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successes and failures, is a belief about how likely a collaboration is to be successful, and

thus partners with whom an agent has had success in the past are likely to be viewed

favourably in the future.

2.3 Pair formation and equilibrium

We draw on the literature on matching problems for our basic model of pair formation.

Because we consider a single population of firms rather than two populations (of jobs

and workers for instance) matching here is a roommate problem, rather than a standard

marriage problem. A one-sided, roommate, matching problem is defined as follows (see

Gale and Shapley, 1962). Each individual i ∈ S has a strict preference ordering Âi over all
the individuals in S−{i}. All preferences are complete and transitive. Let Â = {Âi, i ∈ S}
denote the profile of the preference orderings of all the individuals in S. We generalize the

standard roommate problem to include the possibility of self-matching. This is done in a

straightforward way: the preference ordering is over the entire set S.

Definition 1 The pair (S,Â) is called a roommates matching problem.

A generalized matching is a partition of S into q singletons and (n − q)/2 pairs of
roommates, that is to say a bijection µ : S → S such that µ(µ(i)) = i for all i ∈ S.

Definition 2 A matching µ is stable in (S,Â) if there is no (i, j) /∈ µ such that both
j Âi µ(i) and i Âj µ(j).

Put another way, stability is characterized by the non-existence of blocking pairs. In the

particular problem examined here, the preference profile Â is generated by the expected

output of a pairing F : S2 → R+, which associates to any pair of individuals (i, j) a value
that represents the expected innovative output of this pair. In the event that i = j the

pooled vector is simply the vector of i, and production remains defined as it was above.

The profile of preference orderings Â is then defined by the following rule.

Definition 3 For any i ∈ S, j Âi k if and only if F (i, j) > F (i, k), for all (j, k) in

S2, k 6= j.

Before turning to the emergence of network structure and the associated knowledge

dynamics, we discuss further in detail the market clearing mechanism present in this model.

Because agents in any pair assign the same cardinal value to their match, a unique stable

matching always exists, i.e. the market for alliances always possesses a unique equilibrium.

We prove this by construction.

Proposition 4 A roommates matching problem (S,Â) for which the preference ordering
of any i ∈ S is derived from F : S2 → R+, with F (i, j) = F (j, i), has a unique stable

matching µ.
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Proof: The algorithm to construct the stable matching is as follows. Let S0 = S and

µ0 = {∅}. There exists a pair (a1, b1) such that F (a1b1) = max(i,j)∈S2 F (i, j). Furthermore
as F is an injection, (a1, b1) is unique. Then (a1, b1) must belong to any stable assignment,

as b1 is preferred by a1 to any other partner, and this preference is reciprocal. No matching

which does not involve this pair could be stable. Hence the pair (a1, b1) is necessarily part

of a stable matching. Note that it is possible that a1 = b1. Let then µ1 = µ0+{(a1, b1)} and
S1 = S0− {a1, b1}. If a1 = b1 then µ1 = µ0 + {(a1, a1)} and S1 = S0− {a1}. Again there is
a single pair within S1 maximizing the innovation function. Proceed recursively this way.

Denote p the smallest integer such that Sp = {∅}. Then µp ≡ µ is a stable matching and
q = 2p− n is the number of agents that have preferred self-matching to cooperation.
In case of a tie (that is to say when individual i can achieve the same innovative output

with two or more different partners), we apply an arbitrary rule to guarantee that the score

function is still strict: if F (i, j) = F (i, k) then j Âi k if and only if j > k.

The model just developed represents a complex dynamic process. As such it is impossi-

ble to track analytically, so we use numerical experiments to examine how the performance

of the system responds to different parameters. We are concerned with three parameters

here: the nature of the innovation task (whether divisible or not) and consequently the

nature of knowledge pooling as measured by θ; the elasticity of substitution in the pro-

duction of new knowledge (β); and the effects of agents’ history of interactions. These

parameters are varied in the numerical experiments below, in order to understand their

effects on network structure and knowledge growth and distribution.

3 Numerical experiment

We study a population of n = 100 firms. At the outset individual knowledge endowments

are randomly drawn from a uniform distribution over [0,1], independently for every ele-

ment vm (i) in each agent’s knowledge vector. Each period, the market for collaborative

agreements is activated and firms form pairs (or stay alone) in order to innovate. The

pairing results in a stable matching where stability is defined as above (everybody is as

satisfied as possible, given everyone else’s preferences), and where the value of a pair is

equal to the expected amount of knowledge produced by that pair. After innovation, the

new knowledge is added to the firms’ knowledge stocks; the firms’ knowledge types change,

as described previously; and so does accumulated experience. At the end of the period all

pairs disband, and the process begins again in the following period. We iterate this process

for 1,000 periods, recording data for the entire history of the industry. In the numerical

experiments reported below we chose the initial probability of a success in an emerging

relation to be πL = 0.9, and learning gradually increases it to values close to πH = 0.99.

The three parameters we examine are θ,β and the presence versus absence of cumulative

learning about other agents. Regarding pooling (θ) we consider 100 randomly generated

values uniformly distributed over [0, 1]. Similarly β takes 100 uniformly distributed values

8



in (0, 1].We thus have a large data sample on which we apply a simple non-parametric es-

timation technique – Kernel regression (Yatchew, 1998 for a comprehensive presentation)

– which basically amounts to local averaging.6

Regarding the properties of knowledge accumulation, beside the obvious effect that

increasing β decreases knowledge levels (see Equation 2), we care about the allocation of

knowledge. We employ the knowledge production function φ rather than say the sum over

knowledge categories so endowments are projected into a unit in which summing makes

more sense. Letting φ =
P

i φ (v (i)) , equity in allocation can be assessed by considering

the coefficient of variation in innovative potential

v =

qP
i φ (v (i))

2 /n− (φ/n)2
φ/n

. (8)

Large values of v indicate the coexistence of rich and poor knowledge agents, while lower

values of v indicate a more even distribution. At the individual level symmetrically the

specialization index si of individual i can be defined via the coefficient of variation in his

endowments s (i) = σ (i) /v̄ (i) , where v̄ (i) is the average knowledge level of i and σ (i)

the standard deviation. The larger this index is the more of a specialist and less of a

generalist i is. Summing across the population produces a normalized specialization index

s =
P

i s (i) , for which large values indicate a population of experts, while low values

indicate a population of generalists.

Regarding the network, in any period the static network consists of q isolated agents and

(n− q)/2 disconnected pairs, as given by the stable matching µt. To study the properties
of the dynamic network, we record the list of connections active over time. This generates

a weighted graph, in which the weight of an edge indicates how frequently the two firms

have interacted in the history.

Denote (S, Vt) the graph associated with the stable matching achieved at time t, with

Vt (i, j) = 1 if (i, j) ∈ µt, and Vt (i, j) = 0 otherwise. The weighted graph recording

past interactions is denoted (S,Wt), where Wt (i, j) is the frequency of activations of the

connection between i and j, obtained as Wt (i, j) =
P

1≤s≤t Vs (i, j) /t. For this graph we
study the properties of the distribution of collaborative links, specifically the average path

length and the clustering coefficient (cliquishness in Watts and Strogatz, 1998). To move

fromWt to a 0/1 graph, distances must be computed first. The distance d (i, j) between two

nodes i and j is the number of edges in the highest frequency path linking them. Indeed any

path i0, i1, . . . , iz with i0 = i and iz = j has an associated frequency
Q
l=1,...,zWt (il−1, il)

and a length z ≥ 1, and a path with maximum frequency exists. The average path length

is then

d =
1

n (n− 1)
X
i

X
j 6=i
d (i, j)

6The quality of Kernel estimation is controlled by a scale parameter: the bandwidth. The figures which
are presented below are kernel estimations of a number of statistics, obtained with a uniform kernel and an
optimal bandwidth obtained by cross-validation, which consists in minimizing the out-of-sample prediction
error.
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and simply measures how distant vertices are on average, which is a global property of

the graph (its inverse is sometimes referred to as closeness centrality in social networks

analysis). Denoting Γ (i) = {j 6= i : d (i, j) = 1} the neighbourhood of vertex i and
ni = #Γ (i) the size of i’s neighbourhood, the average degree of the graph is

∆ =
1

n

X
i

ni,

and measures the density of the interaction structure (sometimes referred to as degree

centrality in social networks analysis). Cliquishness is the share of active links between any

given vertex’s neighbours, averaged over the system. It is written

c =
1

n

X
i

X
j,l∈Γ(i)

X (j, l)

ni (ni − 1) ,

where X (j, l) = 1 if d (j, l) = 1 and 0 otherwise.

4 Results

We are interested in the effects of the nature of knowledge pooling on network structure

and on the growth of knowledge. The network is the result of firms’ abilities to combine

knowledge of different sorts and evolves as firms’ needs, and preferences over the population

of potential partners changes over time.

In each of the figures that follow there are two panels. In the left panel, we assume that

past experience with an agent has no effect on the probability of success of a collaboration

with that agent. Initial or a priori success probabilities are set at πH = 0.99. In the

right hand panel, the effects of experience are a described in Section 2.2 above, in which

the success probability increases with past successes starting from πL = 0.9 and bounded

above by πH = 0.99. In each panel the results are displayed as a shaded contour plot, which

should be read as a map in an atlas: darker grey scales imply higher values on the z axis.

This provides a compact display of the relationship between the pooling parameter (θ), the

substitutability of knowledge types in production (β), and the performance measures we

are concerned with.

4.1 Network

Figure 1 displays the number of connections held by the average agent, that is, how many

distinct partners an agent has, on average, over the history of the economy. The first thing

to observe is that magnitudes can differ by a factor up to 5 depending on whether experience

matters or not. This is because experience and the size of innovation are substitutes in the

score value (Equation 6) based on which individual rankings are formed. Thus learning

about a firm tends to make it more attractive as a partner over time, as a result of which

there is always less networking when past experience is relevant in predicting the outcome

of future collaboration. Here we observe the inertia in network formation as described
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by Roijakkers (2003): when experience matters, firms tend to stick with partners they

have had in the past. Also interesting is the fact that the frontier between autarchy and

collaboration is not located identically in both panels. The area of the parameter space

in which only autarchic innovation takes place is larger when experience with other firms

matters. That is, for any value of β, when there is learning, partnerships (as opposed to

autarchy) will appear only for larger values of θ. This is under autarchic innovation the

probability of failure is always 1− πH , whereas failure in joint innovation can occur with

probabilities as high as 1− πL > 1− πH . An agent will only run this higher risk of failure

if he is compensated, which can only happen if having a partner adds significant value.

Only when θ is high can finding a partner (different from oneself) add enough value. Thus

when experience matters, isolation is the preferred mode of functioning over a larger range

of parameter values.
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Figure 1: Average degree of the network in the (β, θ)-space (left: no learning; right: learn-
ing).

Figure 2 is a binary indicator of the connectedness of the network (0, white: discon-

nected; 1, black: connected). Intermediate grey levels are artefacts of the Kernel smoothing

procedure. The emergence of a unique connected component takes place when θ is large

enough for given β. Including experience allows the possibility of enclaves forming. These

will form for random reasons, and show no pattern in (β, θ) space. But the formation of an

enclave implies that that group will not be connected with the rest of the network, which

shows in Figure 2 as a white island within the black region of connected networks. The
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effect of β arises because as β increases, the ability to substitute between knowledge types

increases, and so the need to find a partner to “fill a hole” in a firm’s knowledge vector is

less severe. Thus when β is large, many firms are able to innovate successful on their own,

and there is no strong compulsion to find a partner. On the other hand, when β is small,

it is difficult to substitute one type of knowledge for another, so if a firm has a “hole” in

its knowledge profile, it is imperative to find a partner, and this implies that the graph will

connect. The effect of θ works through the nature of optimal partnerships and the dynam-

ics of knowledge. If dissimilar partners are the norm (θ is small) repeated partnering with

the same partner drives firms too close together and they soon switch to another. Firms

have many partners, which tends to create a connected network. By contrast, when similar

partners are desirable, (large θ), sticking with the same partner is a good thing, so firms

have few partners and the network will contain many isolated groups. The β and θ effects

play off against each other to create the boundary between connected and disconnected

networks.
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Figure 2: The emergence of connectedness in the (β, θ)-space (left: no learning; right:
learning).

Looking at Figures 1 and 2 together we can see a zone of relatively low degree between

the parts of the parameter space where the network is disconnected (white in Figure 2) and

where it is connected (black). This suggests that within this zone, a thick path roughly

along the main diagonal in (β, θ)-space, the network consists of connected sub-networks;

that is, as the network evolves, small, coherent but isolated groups form.
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Figure 3 depicts average shortest path lengths (distances) between agents in the net-

work. Because a disconnected graph has some agents who are infinitely distant from each

other, the averages shown in Figure 3 are computed only for the networks that are con-

nected. The pattern here mimics Figure 2 with relatively little variation in distance for the

connected networks. For the sake of comparison, a random graph of homogeneous degree ∆

has path length approximately equal to lnn/ ln∆. Without learning, in the networks that

emerge from our model, the average path length within a connected graph is very irregular

between 2 and 4 in a triangle-shaped zone in the middle of the panel, and then between

1 and 2 in the higher larger grey zone. In the middle triangle the degree is between 20

and 40, and between 40 and 60 in the upper one. So the prediction for a random graph

would be respectively around 1.4 and 1.2. Thus the paths are slightly longer than in the

equivalent random graph. When experience matters, average distances are between 2 and

4 along the left axis, and between 4 and 5 in the upper zone. As the degree is around 8 the

prediction for a random network would be around 2.2. So again we have longer distances

in our results, suggesting the structure is not purely random.
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Figure 3: Average distance in the (β, θ)-space (left: no learning; right: learning).

Figure 4 displays the average share of an agent’s neighbours who are also neighbours of

each others (transitive triples). Thus this coefficient measures the degree of local transitivity

emerging in the graph. Again there is a factor of almost 3 difference in the magnitudes

between the case when experience matters and when it does not (in the graphs the z-

range was compressed to render differences more visible), and the relationship to the two
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parameters (θ and β) closely follows that for degree. Since path length does not change

dramatically as links are added to the network (Figure 3, this implies that as firms find new

partners they are not creating shortcuts but are rather reinforcing local coherence. The

white region at the bottom of the graph corresponds to the region in parameter space in

which firms tend to innovate as individuals rather than as part of a pair. There clustering

is defined to be zero.
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Figure 4: Cliquishness in the (β, θ)-space (left: no learning; right: learning).

This measure of cliquishness can be misleading, though, since it is driven to a very

large extent by the degree of the graph. As agents acquire more links, even if they are

acquired at random, the network will become more dense locally. To get a better measure

of the structure of the graph, it is necessary to compare cliquishness with that of a network

of known structural properties. We do this with a measure called “excess cliquishness”.

Excess cliquishness, as shown in Figure 5, re-scales the measure from Figure 4 to make

it comparable to a random graph with the same average degree (which has cliquishness

of approximately ∆/n.) Figure 5 depicts the ratio of observed over predicted cliquishness,

and only values significantly larger than 1 would indicate a structure richer than a random

graph.

In the left panel there is a wide middle triangle between 1 and 2, and the upper one

is slightly below 1, together with peaks along the frontier where levels higher than 2 are

reached. In the right panel we see relatively isolated islands of excess cliquishness reaching

levels higher than 2 along the autarchy frontier. Other isolated islands corresponding to
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Figure 5: Normalized cliquishness in the (β, θ)-space (left: no learning; right: learning).

levels between 1 and 2 exist, mostly along the θ axis (so for low β), but the pattern is much

less marked than in the left panel. So in general, the networks tend to be more clustered

than random networks. The discernible effect of β, the substitutability across knowledge

types, would be that highest excess cliquishness obtains for intermediate values of β. There

is an effect of θ, the knowledge pooling parameter. When θ is just above the threshold at

which networking begins, the optimal matching joins agents who are similar to each other.

In this region a great degree of similarity between partners is tolerated. Thus a pair of

agents tends to stay together for a long time, and converge toward each other in knowledge

space. But partners can be too close to each other. When this occurs they search for

new, but still relatively similar partners. This area of the parameter space will engender

“partner-swapping”. Although the magnitude of the excess clustering is relatively small

except in very localized regions, there is a suggestion that cliques tend to form, which

together with the existence of longer path lengths (as compared to a random situation)

is evidence partly supporting the small world assumption. That it does not show up it a

too marked on the other hand also should probably not come as a surprise, because in the

model there is nothing that would give transitivity a value.7

7To illustrate where this value could arise, in Cowan and Jonard (2004) agents are bartering knowledge
over a fixed network. There the value of transitivity is that if there is a failed double coincidence of
wants between two directly connected agents and still one of them could benefit from the other, then the
existence of a common acquaintance provides a route of length 2 over which knowledge can also travel if
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4.2 Knowledge

Figure 6 depicts the relationship between the long run coefficient of variation of individual

knowledge creation and the pair (β, θ) . The general patterns are the same when experience

matters and when it does not. Inequality is weakly decreasing along the β axis with a sharp

peak when β ≈ 0, but there is no discernible effect of θ. The effect of β is explained through
the nature of the CES production function. As β increases from 0 to 1, the marginal product

of the knowledge inputs falls quite dramatically, particularly near zero. This implies that

when β is small, well-endowed agents will make large innovations. They will therefore tend

to grow faster than less well-endowed agents. This preserves, and possibly magnifies initial

differences. This is the effect of β seen in the figure.
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Figure 6: Coefficient of variation in the (β, θ)-space (left: no learning; right: learning).

In Figure 7 we display the average individual specialization as measured by the indi-

vidual coefficient of variation on knowledge endowments.

The individual coefficient of variation has an analytical lower bound of 0 when all

components of the endowment are identical (the agent is a generalist), and an upper bound

of 2 when all the knowledge held by an agent is in one category (the agent is an expert).

The effect of θ is clear, with the degree of specialization falling as pooling moves towards

the maximum of the partners’ endowments. This figure shows essentially a mirror image

the conditions are met.
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Figure 7: Specialization in the (β, θ)-space (left: no learning; right: learning).

of the pattern in Figure 1, the density of the network. Agents become highly specialized

when they innovate largely as individuals. What drives this is that the type of knowledge

produced is probabilistically the same as the knowledge input. Thus an agent is likely to

innovate where he has most knowledge. In expected value, this process will lead to an

agent innovating always in the same knowledge type, and so drive extreme specialization.

When alliances form in a more systematic way (larger θ) there is quickly the emergence

of generalist profiles. Sometimes an agent will innovate in his speciality, sometimes in

his partner’s, and an agent will have many different partners. This will both smooth the

agent’s profile immediately, and possibly even shift his area of expertise. This sort of mixing

produces much flatter profiles, and the more partners an agent has, the more this mixing

will take place.

Figure 8 is the average over the agents of the average pairwise angle between an agent

and his partners. The weights in the averaging are the interaction frequencies. The larger

this angle is the more different (or complementary) the expertise involved in the pairs that

form. Again we have a pattern that resembles that exhibited by network degree in Figure

1. When I have a small number of partners over my history we repeatedly have “angle

diminishing” interactions, since a joint innovation adds the same amount to the two of us,

so decreases unequivocally the angle between us. Thus the average angle between us is

lower than when I have a large number of partners, given I have a constant opportunities

for partnerships. This is an unintentional effect of the number of partners I have over
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the course of the history. In addition there is the intentional effect that for high θ ceteris

paribus I look for people different from me (complementary, so large angle), when for low

θ only pairs between similar people will form, also contributing to a low angle over history.

So in this case the intentional and unintentional effects act in the same direction to produce

the patterns seen in Figure 8.
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Figure 8: Dis-similarity between partners in the (β, θ)-space (left: no learning; right: learn-
ing).

5 Conclusion

In this paper we have addressed the issue of knowledge growth and network formation

through the recombination of existing individual knowledge endowments in a collabora-

tive process. The main issue concerns the tension between on one hand the reduction of

uncertainty as a result of former successful interactions (learning to collaborate) and, on

the other hand, the loss of mutual attraction when successful innovations bring partners’

knowledge profiles closer together, a tendency which is stronger when learning is at work.

As driving forces of the model we considered two central parameters: the ease with

which knowledge from different fields can be substituted for each other in the process of

creating new knowledge (β the exponent in the CES function); and the ease with which

pooling takes place between different knowledge agents prior to the conduct of innovative
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research itself (θ in the model). The latter form of substitution rests on the degree of

cognitive division of labour in the innovative process.

First when learning to collaborate is not part of the process we find that there is a

critical relationship between θ and β where the process tips from a world of firms operating

in isolation to a collaborative world with intensive networking. The critical θ∗ is increasing
with β, and the steepness of the transition between autarchy and a multilateral system

is increasing with β, from very smooth for β ≈ 0 to almost a step function for β ≈ 1.

Connectedness emerges very fast (i.e. for θ slightly higher than θ∗) for any value of β, and
path lengths fall as the degree then keeps increasing with increasing θ. Cliquishness also

mechanically increases with θ as a consequence of increasing degree, but when we look at the

purely random counterpart of the emerging network, we see that there is more cliquishness

and path lengths are longer than pure randomness would predict. This suggests a network

with more structure than a random one, especially in the transition zone between autarchy

and collaboration. Given the magnitude of the excess cliquishness and distances it would

be difficult to claim definitively that a small world has emerged, but there is some structure

to the networks that form.

Regarding the properties of knowledge accumulation, the most marked result is the

decline of individual specialization as inter-individual pooling becomes easier. It may seem

at odds with the general intuition that as labour division gets easier specialization should

increase, but one should keep in mind the way new knowledge is allocated to individuals:

the field in which novelty is created is common to both partners, and this precisely prevents

specialization. In Cowan et al. (2003) a situation in which people where innovating most

often in their domain of expertise was explored, and there of course as division got easier

specialization increased. The contrast between these two results indicates the importance

of understanding exactly how new knowledge is absorbed by economic actors.

Contrasting these results with those found when agents do increase their collaboration

skills by experience, it first appears that under learning the critical relationship between β

and θ is different, with autarchy demanding larger θ to vanish. This stems from the relative

importance of two factors: agents’ innovative success is always more likely in isolation, but

the gains can be lower. Apparently the increased risk of failure is not compensated by po-

tentially larger innovations jointly made, so all else equal, agents are more likely to innovate

as individuals. In addition, in the region of the parameter space where collaboration does

take place, the degree of the network is much smaller (by roughly a factor 5) which means

that fidelity via collaborative learning is a strong force, even though repeated interactions

can exhaust the innovativeness of a pair. The emergent network is completely connected

only for significantly larger θ-values, and there is a thick frontier-zone where degree is low,

the graph is disconnected and there is some excess cliquishness. In this region the network

evolves towards a more structured state, individual agents concentrating their collabora-

tions on a smaller number of strongly interconnected partners. In this narrow zone the

innovation process is separable enough to allow partners to retain some differentiation in

their knowledge profiles, but still joint enough to permit mutual learning and transfer.

Rather than small worlds here we tend to see small disconnected groups relatively densely

connected.
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We have modelled a knowledge system with different levels of substitutability between

agents and between fields, and examined the resulting patterns of networking and knowl-

edge production. Looking at the effects of the two parameters, we see a strong similarity

in the results patterns for the properties of knowledge and for network structures. This

suggests very strongly that the two processes: changes in knowledge stocks, and emergence

of network structures, are strongly linked, and that it would, in general, be a mistake to

try to understand one without examining the other. In particular, we observed a strong

effect of θ, the parameter capturing issues of how firms pool their knowledge, and how the

joint innovative process works. This implies that to understand network formation it is

necessary to know the detail of the processes by which firms jointly innovate. Different

network structures emerge as the process of pooling knowledge, or dividing tasks changes.

The model presented has, for reasons of simplicity and parsimony, has been very stylized in

its treatment of knowledge and innovation. Nonetheless it very strongly suggests that the

interplay between the decomposition of tasks in knowledge creation, the creation of trust

through repeated interaction and the general properties of innovation as knowledge recom-

bination is central in understanding how networks, and industry structures more generally,

emerge and evolve.
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