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Abstract 

The paper analyzes the use of a Multi Agent System for Model Based Diagnosis. In a large 

dynamical system, it is often infeasible or even impossible to maintain a model of the whole 

system. Instead, several incomplete models of the system have to be used to detect possible 

faults. These models may also be physically be distributed. 

A Multi Agent System of diagnostic agents may offer solutions for establishing a global 

diagnosis. If we use a separate agent for each incomplete model of the system, establishing a 

global diagnosis becomes a problem cooperation and negotiation between the diagnostic 

agents. This raises the question whether `a set of diagnostic agents, each having an incomplete 

model of the system, can (efficiently) determine the same global diagnosis as an ideal single 

diagnostic agent having the combined knowledge of the diagnostic agents?' 
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1 Introduction

A traditional diagnostic tool can be viewed as a singlediagnostic agenthaving a model
of the whole system to be diagnosed. There are, however, several reasons why such
a single agent approach may be inappropriate. First of all, if the system is physically
distributed and large, there may be not enough time to compute a diagnosis centrally and
to communicate all observations. Secondly, if the structure of the system is dynamic,
it may change too fast to maintain an accurate global model of the system over time.
Finally, sometimes the existence of an overall model is simply undesirable. For example,
if the system is distributed over different legal entities, one entity does not wish other
entities to have a detailed model of its part of the system. Examples of such systems are
modern telecommunication networks, dynamic configuration of robotic systems such as
AGV driving in a platoon, and so on. For such systems, adistributedapproach of multiple
diagnostic agents might offer a solution.

An important question is of course whether a set of diagnostic agents can (efficiently)
determine the same global diagnosis as an ideal single diagnostic agent having the com-
bined knowledge of the diagnostic agents?

To investigate this problem we distinguish two ways in which the model (knowledge)
is distributed over the agents (cf. [4]): (1)spatially distributed: knowledge of system be-
havior is distributed over the agents according the spatial distribution of the system’s com-
ponents, and (2)semantically distributed: knowledge of system behavior is distributed
over the agents according to the type of knowledge. An example of the latter distribution
of knowledge is a separate model of the electrical and of the thermodynamical behavior
of the system.

The way the knowledge is distributed turns out to have significant repercussion on
multi-agent diagnosis1.

Though multi-agent diagnosis turns out to be possible in theory, it is not always fea-
sible. In this paper we will concentrate on the question whether a set of diagnostic agents
can (efficiently) determine the same global diagnosis as an (ideal) single diagnostic agent
having the combined knowledge of the diagnostic agents?

This paper is organized as follows. Section 2 specifies the diagnostic problem and
Section 3 gives the standard diagnostic definitions. Section 4 discusses multi agent diag-
nosis. Section 5 concludes the paper.

2 The diagnostic setting

A system to be diagnosed is a tupleS = (C,M,Sd, Ctx, Obs) whereC is a set of com-
ponents,M = {Mc | c ∈ C} is a specification of possible fault modes per component,
Sd is the system description,Ctx is a specification of inputs of the system that are deter-
mined outside the system by the environment andObs is a set of observed values of the
system. A componentc ∈ C is either a physical component or a subsystem that is consid-
ered as a component. A component inC has a normal modenor ∈ Mc, one general fault
modeab ∈ Mc and possibly several specific fault modes. Each component has a number

1Although we distinguish spatially and semantically distributed models, combinations are also possible.

1



of connection points. We use the predicatecpnt(x, c) to denote thatx is a connection
point of componentc.

A connection point has one or more values. The functionvalue(p, t) is used to denote
the value of typet of a connection pointp. Types are used to distinguish, for instance,
between the voltage and the current of a connection point.2

Components can be connected through their connection points. These connections
between components are given by instancescon(x, y) of a predicatecon(, ) wherex and
y are connection point identifiers. The setStr of instances of the predicatecon constitutes
thestructural descriptionof the system.

The system descriptionSd = Str ∪ Beh consists of a structural description and a
behavioral description for each componentBeh =

⋃

c∈C Behc. The setBehc specifies a
behavior for each (fault) mode inMc of a componentc. In this specification, the predicate
mode(c,m) is used to denote the modem ∈ Mc of a componentc. For each instance
of mode(, ), Behc contains a behavioral description of the form:mode(c,m) → [. . .]
wherem ∈ Mc.3 The expression[. . .] describes the component’s behaviour given its
modem ∈ Mc. It constrains the values the component’s connection points may take.

The setCtx describes the values of connection points that are determined by the
environment. It consists of instances of the formvalue(p, t) = v wherep is a connections
point, t is a value type andv is a value.

Finally, the setObs describes the values of connection points that are observed (mea-
sured) by the diagnostic agent. It also consists of instances of the formvalue(p, t) = v
wherep is a connections point,t is a value type andv is a value.

Given a systemS = (C,M,Sd, Ctx, Obs), a candidate diagnosisD for S is an
assignment of modes to components that explains the observed behaviour of the system
according to our diagnostic definition, to be discussed in the next section. A candidate
diagnosis is specified by a setD of instances of the predicatemode such that for every
componentc ∈ C there is exactly one mode inm ∈ Mc such thatmode(c,m) ∈ D.

Note that there can be more than one diagnosis, only one of which gives the correct
explanation. The latter is called the final diagnosis.

3 Single agent diagnosis

In this section we present some well-known concepts in model-based diagnosis. It will
be calledsingle agent diagnosissince it assumes that a single agent, having complete
knowledge of the system,S = (C, M, Sd,Ctx, Obs), suffices to make a diagnosis.

The diagnostic definition Given a systemS = (C, M,Sd,Ctx, Obs), a diagnosis can
be made. In the literature two types of diagnoses are distinguished:consistency based
[6, 7] andabductive[1] diagnosis. Both can be combined into one more general diagnostic
definition [2]. This definition will be used here:

2It is not always convenient to introduce separate connection points for each value type that can be observed
on one physical connection point.

3Note that we may use a single description for a class of components. Instances of this description must
imply the form of description give here.
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Definition 1 Let S = (C, M, Sd, Ctx,Obs) be the system to be diagnosed. LetObscon,
Obsabd ⊆ Obs be two subsets of the observations and letD be a candidate diagnosis.
ThenD is a diagnosis forS iff

D ∪ Sd ∪ Ctx |∼
∧

ϕ∈Obsabd
ϕ andD ∪ Sd ∪ Ctx ∪Obscon 6|∼⊥.

Note that we use the symbol|∼ to denote the possibly limited reasoning capabilities
of a diagnostic system. I.e{ϕ | Σ |∼ ϕ} ⊆ {ϕ | Σ |− ϕ}.

If Obsabd = ∅, then we have a pure consistency-based diagnosis, and ifObscon = ∅,
we have a pure abductive diagnosis. Note that, in general, an abductive diagnostic agent
is stronger than a consistency-based diagnosis.

Besides pure consistency based and abductive diagnosis, there is another interest-
ing special case. In the absence of fault models, usually consistency based diagnosis is
used since we cannot explainabnormal observations; i.e. the observations that do not
correspond with the predicted values in case of no component failures. We can improve
consistency based diagnosis if we also allow for abductive diagnosis [8]. In the absence of
fault models, we can only give an explanation for the normal observationsObsN ; i.e. the
observations that correspond with the predicted values in case of no component failures.
This additional information can help us to reduce the number of candidate diagnoses, es-
pecially if it is safe to assume that the effects of one fault cannot be compensated by the
effects of other faults.

The number of diagnoses Potentially, there can be an exponential number of diag-
noses. Even for relatively small systems, listing all these diagnoses can be infeasible. In a
well designed system it is unlikely that the many components fail at the same time (unless
there is a cascade of failures). So, it is safe to assume that only a minimal number of
components is broken. Hence, we can order the diagnoses with respect to the number of
broken components. We can look for either diagnoses with aminimumnumber or with a
subset-minimalnumber of broken components. Here we choose the latter.

Definition 2 Let D and D′ be two diagnoses.D is less thanD′, D ≺ D′, iff {c |
mode(c, ab) ∈ D} ⊂ {c | mode(c, ab) ∈ D′}. A diagnosisD is minimal iff for no
diagnosisD′ it holds thatD′ ≺ D.

Minimal diagnoses have a property that enable them to characterize a whole set of
diagnoses [5]. This property turns out to be useful if we need to combine the diagnoses
made by several agents:

Proposition 1 Suppose that for each componentc ∈ C there are exactly two modes,nor
andab, and letD ≺ D′ be two candidate diagnoses. ThenD′ is a pure consistency based
diagnosis of a system ifD is.

This is a nice result since it enables us to characterize an exponential number of di-
agnoses. Especially if the number of faults is bounded by a constant or of the order
O(log(|C|)), the number of minimal diagnoses is polynomial in|C|.

Partial diagnosesare another way to avoid listing an exponential number of diagnoses.
In a partial diagnosis the mode of some of the componentsc ∈ C is left undefined:

Definition 3 LetD′ be some candidate diagnosis. ThenD ⊆ D′ is a partial diagnosis.
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We are of course interested in the smallest set, with respect to⊂, of components
such that the corresponding partial diagnoses characterize a set of diagnoses. This partial
diagnosis is called akernel diagnosis[5].

Definition 4 D is akernel diagnosisof a system iff (1)D is a partial diagnosis such that
every candidate diagnosisD′ ⊇ D is a diagnosis of the system, and (2) for no partial
diagnosisD′′ ⊂ D the first item holds.

Definition 5 D is an abductive kernel diagnosis iffD is a minimal partial diagnosis such
that: D ∪ Sd ∪ Ctx |∼

∧

ϕ∈Obsabd
ϕ.4

Definition 6 D is a consistency based kernel diagnosis if and only ifD is a minimal
partial diagnosis such that:D ∪ Sd ∪ Ctx ∪Obscon 6|∼⊥.5

We can derive the kernel diagnoses for consistency based diagnosis with abductive
explanation of normal observations from the two types of kernel diagnoses defined above.

Proposition 2 LetDabd be an abductive kernel diagnosis and letDcon be a consistency
based kernel diagnosis of a system. Then,D = Dabd ∪ Dcon is a kernel diagnosis that
characterizes consistency based diagnosis with abductive explanation of normal obser-
vations ifD is a partial diagnosis.6

Proposition 3 LetD be a kernel diagnosis that characterizes consistency based diagno-
sis with abductive explanation of normal observations.

ThenDabd = {mode(c, nor) | mode(c, nor) ∈ D} is an abductive partial diagnosis
andDcon = {mode(c, ab) | mode(c, ab) ∈ D} is a consistency based kernel diagnosis.

4 Multi agent diagnosis

Suppose that instead of one diagnostic agent, we have two or more diagnostic agents.
What can we say about the ability of this group of agents to make a diagnosis. We will
only consider cases in which we have two diagnostic agents since any case in which we
haven > 2 diagnostic agents is a trivial extension. We assume that both agents,A1 and
A2, have partial knowledge about the system. LetC = C1 ∪ C2, let Sd = Sd1

⋃

Sd2

and letObs = Obs1
⋃

Obs2. We also assume that agent knows the connections with the
other agent; i.e.con(x, y) ∈ Sdi iff cpnt(x, p), cpnt(y, q) ∈ Sd, andp ∈ Ci or q ∈ Ci.
From this the agent can derive the corresponding connection points of the other agent; i.e.
Exi = {x | con(x, y) ∈ Sdi, {cpnt(x, c), cpnt(y, c′)} ⊆ Sd, (c′ 6∈ Ci or c 6∈ Ci)}. The
agent may have to ask / tell the values of connection points inExi from / to the other
agent.7 So,Si = (Ci,M, Sdi, Ctx, Obsi) is the system known to agentAi andExi are
the external connection points ofSi. Finally, letDi be a candidate diagnosis of agentAi.

4Note that all mode descriptions inD have thenormalmode ifObsabd = ObsN . Also note that there is
only one kernel diagnosis if none of the components behaves like a switch [8].

5Note that without fault models all mode descriptions inD have theabnormalmode.
6That is, D is a partial diagnosis if there are nomodeconflicts; i.e. for noc ∈ C: mode(c, no),

mode(c, ab) ∈ D.
7Note that in case of more that 2 agents, agentAi also need to know which agent is responsible for a

connection point inExi.
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Given multiple diagnostic agents, an important question is how the diagnoses of the
agents relate to the diagnoses of a single agent that has complete knowledge of the system
description and the observations. When addressing this question we assume through out
the paper that there are no conflicts between the knowledge of the different agents. That
is, there is a diagnosisD such that:D ∪ Sd ∪ Cxt ∪Obs is consistent.

Proposition 4 LetA1 andA2 be two diagnostic agents each having partial knowledge of
the system; i.e.S1 andS2. Moreover, letD be a single agent diagnosis ofS.

ThenD1 = {mode(c, s) | c ∈ C1,mode(c, s) ∈ D} is a diagnosis ofA1 and
D2 = {mode(c, s) | c ∈ C2,mode(c, s) ∈ D} is a diagnosis ofA2.

Proposition 5 Let A1 and A2 be diagnostic agents with partial knowledgeS1 respec-
tively S2. Moreover, letD1 andD2 be diagnoses of agentA1 respectivelyA2 for which
the agents agree on the values of the connection pointsEx1 andEx2.

Then,D = D1 ∪D2 is a single-agent diagnosis ifD is a candidate diagnosis.

Note that the above propositions show that multi agent diagnosis is possible. In particular,
Proposition 5 offers the possibility to establish global diagnoses by information exchange
between agents

The complexity of determining a global diagnosis depends on the organization of the
multi agent system. First, knowledge of the system can be distributed in different ways
over the agents. We will consider two extreme cases, knowledge that is either semantically
of spatially distributed. Second, it makes an important difference whether agents use fault
models of the behavior of components. Third, the dependencies between the knowledge
distributions plays an important role. The dependencies determine whether agents have
to exchange information to make a ‘local’ diagnosis.

Analysis

Dependent descriptions Before agents can establish a global diagnosis they first have
to establish a local diagnosis using the knowledge of their part of the system. An important
issue is whether they can do this independently of each other.

Dependencies arise because different models of the system are interconnected. By
definition, such connections are present when knowledge is spatially distributed. When
knowledge is semantically distributed, independence is possible, e.g., if a electrical and
a thermodynamical description of the system is used. If, however, the heat of a (broken)
component influences the electrical characteristics of the near by components, we no
longer have independence.

We can enforce independence by observing the values of all connection points be-
tween different descriptions of the system; i.e. the values ofExi. In large systems this
may not be feasible. Hence, agents have to exchange predicted values of connection point
for every candidate diagnosis they consider. This may cause large communication over-
head since the number of candidate diagnoses is exponential.

Exchanging information for each candidate diagnosis is not the only problem. If con-
nection between incomplete modelsSi of the systemS are directional (i.e. all connection
points inExi are either inputs or outputs), the connections form graph that may contain
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cycles. Hence, the agents may need many cycles of exchanging predicted values in or-
der to reach a stable prediction of the systems behavior. Moreover, because of numerical
instabilities, the agents may not reach a stable prediction.

If not all connection are directional, the values of connection points inExi cannot
be determined by a single agent given a diagnosis. Two or more agents place constraints
on the value of a connection point. An example of such a system is a battery and a lamp
managed by two diagnostic agents, one for the battery and one for the lamp. The voltage
and the current in the connection point depends on the characteristics of both the battery
and the lamp. One may, for example, use bond graphs to create a model of the system
with only explicit in- and outputs [3]. This is also possible for the battery-lamp example.
The connections between the parts of the system managed by different agents, however,
may formcycles.

Semantically distributed knowledge If knowledge is semantically distributed, each
agents looks at different aspects of the whole system. We will first consider the situation
in which agents have no fault model, and in which the knowledge of the agents is inde-
pendent. The latter implies that either there are no connections,Exi = ∅, between the
different descriptions of the system or all connection points of the connections between
S1 andS2 are observed.

If we only apply consistency based diagnosis, i.e.Obsabd = ∅, we can derive the
following result.

Proposition 6 Let the diagnostic agentsA1 andA2 be organized as described above and
let D1, D2 respectively their diagnoses. Then,D = {mode(c, nor) | mode(c, nor) ∈
D1,mode(c, nor) ∈ D2} ∪ {mode(c, ab) | mode(c, ab) ∈ D1 or mode(c, ab) ∈ D2} is
a single agent diagnosis.

Note that if bothD1 andD2 are minimal diagnoses,D need not be a minimal diagnosis.
The above proposition, together with Proposition 4, implies that we can determine

all minimal diagnoses of a single agent approach combining every minimal diagnosis of
agentA1 with every minimal diagnosis of agentA2 and subsequently select the mini-
mal diagnoses from the resulting set. Since the number of combinations is quadratic in
the number of minimal diagnoses, and assuming that the number of minimal diagnoses
of each agent is polynomial in|C|, we are able to determine the global (single agent)
diagnoses in polynomial time.

As in the single agent approach, we can improve consistency based diagnosis if we
also allow for abductive explanation of normal observations [8]. The results of Proposi-
tions 2 and 3 can be extended to multi agent diagnosis.

Proposition 7 Let the diagnostic agentsA1 andA2 be organized as described above, let
Dabd

1 andDabd
2 be their abductive kernel diagnoses andDcon

1 andDcon
2 their consistency

based kernel diagnoses. Then,D = Dabd
1 ∪Dabd

2 ∪Dcon
1 ∪Dcon

2 is a single-agent kernel
diagnosis ifD is a partial diagnosis.

Note that the above proposition and Proposition 3 imply that we can determine all kernel
diagnoses of a single agent approach combining every abductive and consistency based
kernel diagnosis of agentA1 andA2 and subsequently select the minimal consistent kernel
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diagnoses from the resulting set. Again, since the number of combinations is quadratic
in the number of minimal diagnoses, and assuming the number of minimal diagnoses of
each agent is polynomial in|C|, we can determine the global (single agent) diagnoses in
polynomial time.

In some areas, it is important to know the type of fault that has occurred. In medical
diagnosis for instance, we do not only need to know the component that is failing but also
what is causing it to fail. In this area we usually do not replace a component but instead
try to eliminate the cause of the malfunction. Hence, fault models are required.

Allowing for fault models complicates the process of combining the candidate di-
agnoses of several agents. The reason for this is that, given an ordering of candidate
diagnosesD1 ≺ D2 ≺ D3 ≺ D4, D1 andD3 can be diagnoses whileD2 andD4 are
not. Hence, we can no longer characterize an exponential number of diagnoses using a
polynomial number of minimal or kernel diagnoses. Exchanging all (kernel) diagnoses
between the agents is, in general, infeasible.

Instead of exchanging all diagnoses, we could use an incremental approach. In such an
approach the agents start exchanging the diagnoses in the order of decreasing likelihood.
They stop the moment they agree on the diagnoses of a certain likelihood. Since the a
priori chance that a component is broken is in most situations very small, this approach
might find the numerically minimal diagnoses in a reasonable amount of time.

We might improve the incremental approach if agents supply the reasons of rejecting
a proposed diagnosis. When agentA1 proposes a partial diagnosisD1, agentA2 might
reject the diagnosis because some (combination of) modes is inconsistent with its obser-
vations. LetR2 ⊆ D1 be such (a combination of) modes. ThenR2 is the smallest subset
of D1 such that:R2 ∪ Sd2 ∪ Ctx ∪ Obs2 |∼⊥. AgentA1 can use this informationR2
as a constraint in its search for a next diagnosis. It may not select a new diagnosisD′

1
containingR2 as a subset.

Spatially distributed knowledge We assume that every part of the system managed
by an agent has only explicit in- and outputs. If agents use fault models, they have to
exchange information about the values of connection points connected to another agent for
every candidate diagnosis they consider. The agents can reduce the amount of information
exchange by ignoring the fault models. Agents may reduce the amount of information
exchange even further if they may assume default values for these connection points. In
both cases, we can only apply consistency based diagnosis or consistency based diagnosis
with abductive explanation of normal observations.

Inputs of an agent’s part of the system that are determined by other agents, can be
incorrect. Therefore, agents must assume the correctness of these inputs and must be able
to withdraw these assumptions during diagnostic reasoning. When an agent no longer
assumes that an input is correct, it must pass on this information to the agent whose part
of the system determines the input. For every candidate diagnosis an agent considers, it
must provide this kind of feedback to the other agent(s). How to do this efficiently is an
open question that requires further research.
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5 Conclusion

Multi agent diagnosis is possible but not always feasible. If diagnostic knowledge is se-
mantically distributed, the usage of fault models may result in exchanging an exponential
amount of information in order to establish a global diagnosis. A proper coordination
protocol may restrict the amount of information exchange.

If diagnostic knowledge is spatially distributed, the amount of information exchange
depends on whether the agents exchange predicted values. Circular dependencies between
the information required by different agents may cause a lot of information exchange.
Moreover, the use of fault models makes things worse. An important topic for further
research will be the development of protocols that enable establishing a global diagnosis
while controlling the amount of information exchange.
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