

MERIT-Infonomics Research Memorandum series

 Retrieval of Service Descriptions

using Structured Service Models

 Rudolf Müller and Stefan Müller

 2001-015

MERIT – Maastricht Economic Research
Institute on Innovation and Technology
PO Box 616
6200 MD Maastricht
The Netherlands
T: +31 43 3883875
F: +31 43 3884905

http://meritbbs.unimaas.nl
e-mail:secr-merit@merit.unimaas.nl

International Institute of Infonomics

PO Box 2606
6401 DC Heerlen
The Netherlands
T: +31 45 5707690
F: +31 45 5706262

http://www.infonomics.nl
e-mail: secr@infonomics.nl

Retrieval of Service Descriptions using Structured Service Models
Rudolf Müller and Stefan Müller
May 2001
Keywords: Application Service Provider, Retrieval, subgraph homomorhism
JEL: C61
ACM: H33, G22

Abstract
The Application Service Provider (ASP) market leads to rapidly increasing numbers
of sites that offer software as an online service, rather than for download and
installation. This creates a demand for intelligent solutions to retrieve the best service
to resolve the user's problem. This paper introduces Structured Service Models to
represent software services and explores a retrieval mechanism on repositories of
structured service models. The mechanism is based on computing graph similarity on
a special class of directed acyclic graphs. Finding most similar models is NP-
complete, however the special structure of the graphs can be exploited for exact and
heuristic algorithms. The paper also presents a prototype system designed as a three-
tier client-server application where the client is implemented in Java. The system
provides facilities for stating queries on a remote repository by drawing a structured
service model in a Java applet. The paper concludes with an initial evaluation of the
system.

Rudolf Müller
International Institute of Infonomics and Department Quantitative Economics
University of Maastricht, PO Box 616, 6200 MD Maastricht, Netherlands
Phone +31-43-3883799, e-mail: r.muller@ke.unimaas.nl

Stefan Müller
Wilhelm Schickard Institute for Computer Science
University of Tübingen, Sand 13, 72076 Tübingen, Germany
Phone +49-7071-2975485, e-mail: muellers@informatik.uni-tuebingen.de

1 Introduction

The Internet gives access to numerous libraries of mathematical models for deci-

sion making. For example, NetLib [12] and a Princeton Web server [11] contain

about 900 AMPL [4] models. So far these services require the models to be in-

stalled on the local computer. ButDecision support on demand[1], where the

model can be used interactively on a remote server, is likely to become widely

available in the near future. Indeed, application service provision is enjoying a

market breakthrough these days, and decision support in applications such as fi-

nance and product selection is already offered by many sites.

There is litle retrieval function available for online libraries of models or for

decision-support services. This is partly due to the lack of appropriate service

descriptions and, as a consequence, of appropriate retrieval algorithms for repos-

itories of such descriptions. Retrieval via model libraries can currently be imple-

mented either by directed search, based on a classification index, or by full text

retrieval. This paper introduces a completely new approach in whichstructured

service models, a special class of acyclic directed graphs, are used for service rep-

resentation. A query model from a user is checked for similarity with models in

the repository and those that are most similar are reported as a retrieval result.

Our approach is based onStructured Modelingby Arthur M. Geoffrion [6].

Broadly speaking, a structured model is an acyclic directed graph whose nodes

represent components of the model (entities, decision variables, etc.) with arcs

representing definitional dependencies between components. Structured Model-

ing has been proven to have the potential to capture the essential characteristics

of a model in the Management Science field [8]. This motivated us to evaluate its

applicability as a paradigm to represent decision support services and to use this

representation for retrieval.

The paper is structured as follows. Section 2 introducesStructured Service

Modelsand shows the differences to Structured Modeling. Section 3 presents

methods for retrieval. We define a distance between models based on mapping

the nodes of one model to those in another model to provide a maximum num-

ber of arcs. Finding the best mapping is an NP-complete optimization problem,

but the special structure of our models supports the design of exact and heuris-

tic algorithms for similarity computation. Section 4 describes our prototype im-

plementation. First test results are presented in Section 5. We conclude with a

summary.

This paper focuses on the application domain of decision support services,

yet our approach can easily be extended to repositories of other software services

on the Internet. Indeed, our service models define the entities, parameters, vari-

ables, constraints, and objective of a service—key elements in the description of

a software service.

2 Modeling services by Structured Service Models

We call the description of a service aStructured Service Model(SSM). An SSM

describes the problem that is solved by the service: data that is input to the service,

data that is computed by the service, and the relationships between these data.

This approach is based onStructured Modeling[6] which was designed to define

decision models in Management Science, but which has shown great potential

in representing models from other fields as well, e.g. database models [2]. Our

SSM can be viewed as a limited version of Structured Modeling, to simplify the

usage of the modeling language. Simple structures also open the door for efficient

retrieval from model libraries.

An SSM is a directed acyclic graph with textual node labels describing their

semantics. Each node represents an item, each arc represents a definitional depen-

dency between items. An SSM distinguishes 6 types of nodes.

An entitynode represents a primitive item whose definition does not depend

on other items. Aparameternode represents an attribute describing an entity, or

combinations of entities, and whose value is used as input to the service. Avari-

able node stands for an attribute whose value is computed by the service. In a

decision model we can think of it as a decision variable. The definition of param-

eters and variables are dependent on the definition of the entities they describe.

A functionrepresents a rule to compute a value from variables and parameters.

2

In a decision model it represents, for example, the objective. Atestis a function

that evaluates using true or false. It is an expression that defines a constraint on a

combination of parameters and variables. Amulti-testis a collection of tests, rep-

resenting the fact that a constraint has to be valid for a range of combinations of

parameters and variables. We illustrate this in more detail in the example below.

The distinction between parameters and variables, as well as between tests and

multi-tests, extends concepts of Structured Modeling to ease the construction of

SSM from models written in other widely used modeling languages (e.g. AMPL).

The SSM graph contains arcs(v; w) for all nodesv andw for which the def-

inition of the item represented by nodew depends on the definition of the item

represented by nodev. For example, if a nodew stands for a parameter that is

associated with an entity, represented by nodev, an arc(v; w) is added. Or, ifw

represents a test, we add arcs pointing tow from all variable and parameter nodes

that are input to that test.

Arcs are only allowed between specific types of nodes: (1) from entities to

variables and parameters, (2) from variables and parameters to functions, tests

and multi-tests. Thus, SSM are acyclic directed graphs with three layers of nodes:

a layer of entities, a layer of parameters and variables, and a layer of functions,

tests, and multi-tests. This restricts structured modeling, as the last of these would

allow, e.g. dependencies between functions. As we will see, this supports the

computation of similarity of models. On the other hand we believe that it does

not excessively restrict the expressiveness of the SSM. Indeed, arcs between func-

tions represent intermediate steps that help to modularize the model, rather than

capturing the semantics of a service. Choices of modularization might be rather

arbitrary. This could even negatively influence the retrieval quality.

Figure 1 shows the SSM for the Hitchcock-Koopman transportation model.

The decision model describes the situation where we have a collection of plants

and customers represented by the entities PLANT and CUST. Each plant has

a supply and each customer has a demand, modeled by parameters SUP and

DEM. For each plant-customer combination we observe per unit transportation

costs from plant to customer, modeled as parameter COST. Decision variables

3

are the numbers of shipments between each plant and each customer, given by the

variable FLOW. The total shipment to a customer has to satisfy demand, and total

shipment from the plant may not exceed supply. These constraints are modeled

by multi-tests T-SUP and T-DEM. The objective is to maximize revenue, which

is represented by the function REV.

T-DEMREVT-SUP

PLANT

COST FLOW DEMSUP

CUST

Figure 1: SSM for

transportation problem

Figure 2: The FIRESTORM user interface

Retrieval of software services can use an SSM in the following way: a model

repository provides a library of service models, including the URL to access the

service. A user submits a query to the repository by creating his own SSM de-

scribing the service he/she is looking for. The retrieval mechanism returns those

SSMs that are “close” to the query model. This approach poses the following

research questions:

1. Just how precisely can an SSM describe the semantics of a software service

and a user’s request for such a service? For which type of service is it

particularly valuable?

4

2. What are appropriate measures for problem similarity? In particular, will re-

trieval based on searching for similar models provide appropriate precision

and recall? How efficiently can we implement retrieval on SSM reposito-

ries?

This paper can only address certain parts of these questions. Essentially, we

assume that SSMs are good representations of services. This assumption is qual-

itative and based on the extensive literature on Structured Modeling [7]. Having

made this assumption, we choose a structural difference between SSMs (see Sec-

tion 3) as the measure of similarity (or dissimilarity). Based on this choice we

present our prototype repository and retrieval system that provides us with an-

swers to question 2.

3 Retrieval on model repositories

In the previous section we introduced SSM as an approach to model services,

particularly decision-support services. The task of SSM is twofold. Firstly, they

can be used as a graphical representation of a service that helps a user to decide

whether the service meets his/her requirements. Secondly, providers of services

can register them in repositories, allowing users to search those repositories for

matching services. Furthermore, robots might automatically create an SSM from

other service descriptions, such as a description in an algebraic modeling lan-

guage for a decision model. This section deals with supporting searches in ser-

vice repositories. We have designed and implemented retrieval algorithms that

compute graph similarities and use algorithms from combinatorial optimization.

The core of our retrieval mechanism is a similarity measure that uses the ad-

jacency structure of SSM graphs. We saw in the previous section that graphs

consist of three layers, with two node types on the second layer and three node

types on the third layer. Thus we can represent a graph by (UE; UP ; UV ; UT ; UM ;

UF ; A), whereUE are the entity nodes,UP the parameter nodes,UV the variable

nodes,UT the test nodes,UM the multi-test nodes,UF the function nodes, and

A the arcs. Given two graphsG andG0, we look at partial mappings� of the

5

nodes fromG on the nodes ofG0 which map nodes of the same type, e.g. nodes

in UE on nodes inU 0

E. We then count the number of arcs fromG that are im-

plicitly mapped on arcs inG0, i.e., arcs(v; w) such that(�(v); �(w)) 2 A0 and

call this numberq. Thematching qualityrealized by the mapping� is defined as

d(�) = 2q=(jAj + jA0j). The similarity between two graphs is then defined by

the maximum over all matching qualities of mappings fromG to G0. We require

mappings to be ’one to one’.

The mapping quality is a rational number between0 and1, where the quality

1 indicates that a mapping exists between the library graph and the query that

exactly matches all arcs. As we can assume w.l.o.g. that there are no isolated

nodes in an SSM, this is the case if, and only if, both graphs are isomorphic.

An immediate question is whether we are able to compute the similarity be-

tween graphs in polynomial time. The answer is, unfortunately, no.

Theorem 1 Given two SSM graphsG andG0 and a numbers 2 [0; 1] the problem

to decide whether the similarity ofG andG0 is greater than or equal tos is NP-

complete.

Proof. The NP-complete problem 3-DIM -MATCHING [5] can be reduced to this

problem. We leave it out here but simply mention that it shows that even with

one type of node on layers 2 and 3, e.g. only variables and function nodes, the

problem remains NP-complete. Complete proof can be found in [9].

Although the problem of finding a mapping of optimal quality isNP -hard, the

special structure of our graphs supports us in designing heuristic methods. This is

due to the 3-layer structure of our graphs. Let us assign new namesU1, U2, and

U3 to layers, whereU1 = UE, U2 = UP [UV , U3 = UM [UF . Given another

graphG0 = (U 0

1
; U 0

2
; U 0

3
; A0) a mapping from a subset ofG nodes toG0 nodes,

mapping nodes of the same type, breaks down into three mappings�i : Ui ! U 0

i ,

i = 1; 2; 3. Suppose we fix two of these mappings,�1 and�2, and want to change

the third in order to improve the matching quality. How efficiently can this be

achieved? The good news is given below.

6

Theorem 2 Given a mapping� between two SSM graphsG and G0, splitting

into parts�1; �2, and �3, we can efficiently compute for everyj 2 f1; 2; 3g a

mapping with optimal matching quality across all mappings�0 with �0

k = �k; k 6=

j. Furthermore, for fixed�2, we can compute a mapping with optimal matching

quality across all mappings�0 with �0

2
= �2.

Proof. For the first part of the theorem we observe that we can find an optimal

�0

j by solving a weighted bipartite matching problem in an appropriately con-

structed bipartite graphH = (V; V 0; E). Indeed, we takeV = Uj, V 0 = U 0

j,

E = f(v; v0)j v; v0 belong to the same categoryg. The weight of an edgefv; v0g

is set to the number of arcs that are realized by�0 if v is mapped tov0. Because

of the layered SSM stucture this number does not depend on the mapping of other

nodes on the same layer. A maximum weighted matching inH thus corresponds

to a best�0

j with respect to fixed�0

k = �k; k 6= j. For the second part of the

theorem observe that for layers 1 and 3 the edge weights in our matching graph

only depend on how the middle layer is mapped. In both cases the optimal match

can be found in polynomial time (see e.g. [10]).

By optimizing� on one layer while fixing it on the other layers the assignment

on the other layers does not stay optimal. Nevertheless our theorem is a good base

for exact or heuristic algorithms.

For an exact approach we can enumerate all feasible mappings of nodes from

the second layer and, for each of them, solve the matching problems on layers 1

and 3 to optimum. This algorithm is polynomial for a fixed number of nodes on

layer 2, and a reasonable algorithm for small numbers of nodes on layer 2.

For a heuristic approach we can use a local search framework (see, e.g. [10]).

A feasible solution is given by mapping�. Every feasible solution has two neigh-

bors, given by partial fixes of�: keep layer 2 fixed, keep layer 1 and 3 fixed. We

choose the best mapping for both neighbors. We can implement different search

strategies on this neighborhood structure, best neighbor, tabu search, or simulated

annealing.

Note that the neighborhood graph consists of disjoined cycles. It might there-

fore be better to extend the neighborhood structure by looking at more than just

7

two feasible solutions. This can be achieved by changing a mapping� only in a

few positions in the unfixed part, instead of just optimizing using Theorem 2. For

the time being we have implemented this version of a local search. It starts at an

arbitrary mapping� of nodes and calculates the number of realized edges. While

there are a pair of nodes of the same category inG, for which an exchange of

images under� increases the number of realized edges, this exchange is carried

out. If no such exchange is found the algorithm reports the solution reached as a

local optimum.

4 Description of the FIRESTORM prototype

The purpose of the prototype is to validate our proposals for service retrieval and

to improve them. On the one hand this requires that we benchmark our algorithms

on large model repositories and, on the other hand, it requires real users to test the

system and report their experiences. We have therefore implemented a Web-based

client-server system, consisting of a Java applet on the client side that implements

the user interface, a retrieval server with retrieval algorithms, to which the Java

applet sends retrieval requests, and a database with collections of SSMs. This

prototype has been named FIRESTORM (FIrst a REtrieval SysTem for Operations

Research Models).

We start with an illustration of the user interface as it best describes the func-

tionality of the system. Once the user has loaded the Java applet from the site

http://134.2.11.23/firestorm a FIRESTORM frame opens (left part of Figure 2).

Within this frame the user can edit an SSM, which represents the query to the

system. In a future release service providers can use this frame to submit models,

thus extending the collection of models in the FIRESTORM database. The client

provides all functions to insert, delete and move nodes and arcs. After creating

a query model, the user opens the similarity checker for retrieval (right part of

Figure 2). This frame activates the graph similarity algorithms from section 3

with a possibility to restrict the size of the query result. It contains functions for

browsing through the retrieval results and viewing additional information (e.g. the

8

source model, if the SSM was generated from an AMPL model).

The retrieval server encapsulates the retrieval algorithms. Retrieval is carried

out in main memory; all models are currently loaded at the beginning of a user’s

session. A local search for graph similarity is available, using two exchanges to

define the neighborhood structure with a best neighbor strategy as search strategy,

as well as an exact method covering all assignments of the middle layer nodes (see

Section 3).

Evaluating retrieval systems requires a sufficient number of retrievable docu-

ments, but where do you get a large number of service models from? In future,

we will use the system to track service providers and request that they register

with us, but in the meantime we had to find an alternative solution. We therefore

decided to concentrate on a particular application domain and, within the domain,

on a particular type of service. The domain is Operations Management (OM), and

within the domain we looked for services that already have a formal description.

This led us to digital libraries for decision-support models represented in various

modeling languages (e.g. AMPL, MP, spreadsheets). Again as a first step, we de-

cided to focus on the modeling language AMPL. A large library of AMPL models

is provided by Robert Vanderbei at Princeton University [11], containing around

850 AMPL models. We used this library as an initial test-bed. We have imple-

mented a parser that automatically translates AMPL models into SSM. The parser

generates a library of SSMs stored in a relational database on the server side.

5 First evaluation results

We currently only have feedback from colleagues and students within our insti-

tutions. However, we observed that people who are familiar with optimization

models find it easy to convert their idea of a problem into an SSM. People lack-

ing this experience face problems in identifying entities, parameters, variables

and the dependencies between them. This is not surprising since this is the core

of mathematical modeling, which is generally considered to be a fairly difficult

task. A useful extension might be a wizard that supports a user through the model

9

creation process. Wizards could also provide model skeletons for application do-

mains, which a user initially selects and then refines according to his/her specific

problem description.

In a second test we added a knapsack model to our library and asked users

to model the problem of changing a bill into a minimum number of coins, where

coins of different value are available, as an SSM. This problem is a special case

of the knapsack problem. The result was that the knapsack model in the library

always had a very high ranking in the retrieval result. Aside from a few combi-

natorial optimization models, the model base mainly consists of non-linear opti-

mization problems, due to the lack of extensive libraries from other fields (e.g.

linear optimization). Test users should therefore be familiar with non-linear mod-

els, or the model base will have to be extended. Again, we might use AMPL

models, but model libraries written in other languages, or models provided by

users are also a possibility. We are currently developing a mapping from Unified

Modeling Language (UML) class diagrams into SSM. This extends our system

to a retrieval system for reusable software components with retrieval mechanisms

similar to those presented in [3].

In terms of efficiency our results are very satisfactory. For the current size and

number of models in the database the local search-based graph similarity algo-

rithm reports results almost immediately. The exact method should only be used

on a reduced number of models, for example those for which the fast heuristic re-

ports offer high similarity. Further filter algorithms with other distance measures

that are faster to compute (e.g. a distance according to edge-type vectors) will

be explained in a forthcoming paper. They will be essential in reducing response

times when both the database and the stored models are growing larger.

Let us mention the most critical point at the end. This is the question of how

well SSMs capture the semantics of services in general, and models from OM

in particular. So far only structure has been compared, which is not likely to be

precise enough. However, the purely structural approach can simply be extended,

without leaving the algorithmic framework of computing graph similarity. Firstly,

we increase the semantic expressiveness of SSM by further specializing the node

10

types (e.g. introducingSumor Productas special function element type). This

could even decrease the complexity of the graph similarity problem as it restricts

the number of feasible mappings. Secondly, we can combine the structural re-

trieval with syntactic retrieval on the element names. This would be consistent

with the algorithms we have presented in Section 3, since syntactic distance of

node names can refine the measurement of the quality of a node mapping—for

example by using it to define edge weights in the bipartite matching algorithm

from Theorem 2.

6 Summary

We have presented a new and easy-to-use approach for representing software ser-

vices as SSM. We have shown that this representation can be used as a basis for

retrieval from repositories of services using the network structure. While we are

able to show that finding the best mapping between model nodes is NP-complete,

we could also show that the mapping problem has structure that supports the de-

sign of exact or heuristic methods. We have described the functionality of the pro-

totype system, available on the World Wide Web at http://134.2.11.23/firestorm.

We finally concluded with a preliminary evaluation of our approach.

Depending on further feedback from test users we will extend the system by

using more specific types of model components, refining the similarity measure

between models and, depending on a certain application domain, by offering fre-

quently used node names and modeling wizards. We will also provide a set of

generic models that a user could customize according to his or her needs.

Acknowledgement

We thank the referees for their valuable comments in helping us to improve the

quality of our contribution.

11

References

[1] H.K. Bhargava, R. Krishnan, and R. M¨uller. Decision support on demand:

Emerging electronic markets for decision technologies.Decision Support

Systems, 19(3):193–214, 1997.

[2] K. Chari and T. Sen. A graphical modeling system: Applications in orga-

nizational model management.Omega, Int. J. Mgmt Sci., 25(2):241–253,

1997.

[3] B. H. C. Cheng and J.-J. Jeng. Reusing analogous components.IEEE Trans-

actions on Knowledge and Data Engineering, 9(2), 1997.

[4] R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for math-

ematical programming.Management Science, 36(5):519–554, 1990.

[5] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, San Francisco, 1987.

[6] A. M. Geoffrion. An introduction to structured modeling.Management

Science, 33(5):547–588, 1987.

[7] A. M. Geoffrion. An Informal Annotated Bibliography on Structured Mod-

eling. WMSI Working Paper 390, UCLA, 1999. available at

http://www.anderson.ucla.edu/faculty/art.geoffrion/home/biblio/ia.htm.

[8] C. V. Jones. An introduction to graph-based modeling systems, part i:

Overview.ORSA Journal on Computing, 2(2):136–151, 1990.

[9] R. Müller and S. Müller. Retrieval of service descriptions using structured

service models (extended version). Working paper, 2000. Available at

http://www-db.informatik.uni-tuebingen.de/˜ muellers/papers/ssmext.pdf.

[10] C. H. Papadimitriou and K. Steiglitz.Combinatorial Optimization: Algo-

rithms and Complexity. Prentice-Hall, 1982.

12

[11] Princeton University. Nonlinear Optimization Models – Sample AMPL Ex-

amples, 2000. Available at

http://www.sor.princeton.edu/˜ rvdb/ampl/nlmodels/index.html.

[12] UTK and ORNL. Netlib Repository of mathematical software, papers, and

databases, 1995. http://www.netlib.org/.

13

MERIT-Infonomics Research Memorandum series
- 2001-

2001-001 The Changing Nature of Pharmaceutical R&D - Opportunities for Asia?

Jörg C. Mahlich and Thomas Roediger-Schluga

2001-002 The Stringency of Environmental Regulation and the 'Porter Hypothesis'

Thomas Roediger-Schluga

2001-003 Tragedy of the Public Knowledge 'Commons'? Global Science, Intellectual

Property and the Digital Technology Boomerang
Paul A. David

2001-004 Digital Technologies, Research Collaborations and the Extension of Protection

for Intellectual Property in Science: Will Building 'Good Fences' Really Make
'Good Neighbors'?

 Paul A. David

2001-005 Expert Systems: Aspects of and Limitations to the Codifiability of Knowledge
 Robin Cowan

2001-006 Monopolistic Competition and Search Unemployment: A Pissarides-Dixit-

Stiglitz model
 Thomas Ziesemer

2001-007 Random walks and non-linear paths in macroeconomic time series: Some

evidence and implications
 Franco Bevilacqua and Adriaan van Zon

2001-008 Waves and Cycles: Explorations in the Pure Theory of Price for Fine Art
 Robin Cowan

2001-009 Is the World Flat or Round? Mapping Changes in the Taste for Art
 Peter Swann

2001-010 The Eclectic Paradigm in the Global Economy
 John Cantwell and Rajneesh Narula

2001-011 R&D Collaboration by 'Stand-alone' SMEs: opportunities and limitations in the

ICT sector
 Rajneesh Narula

2001-012 R&D Collaboration by SMEs: new opportunities and limitations in the face of

globalisation
 Rajneesh Narula

2001-013 Mind the Gap - Building Profitable Community Based Businesses on the

Internet
 Bernhard L. Krieger and Philipp S. Müller

2001-014 The Technological Bias in the Establishment of a Technological Regime: the

adoption and enforcement of early information processing technologies in US
manufacturing, 1870-1930

 Andreas Reinstaller and Werner Hölzl

2001-015 Retrieval of Service Descriptions using Structured Service Models
 Rudolf Müller and Stefan Müller

Papers can be purchased at a cost of NLG 15,- or US$ 9,- per report at the following address:

MERIT – P.O. Box 616 – 6200 MD Maastricht – The Netherlands – Fax : +31-43-3884905
(* Surcharge of NLG 15,- or US$ 9,- for banking costs will be added for order from abroad)

Subscription: the yearly rate for MERIT-Infonomics Research Memoranda is NLG 300 or
US$ 170, or papers can be downloaded from the internet:

http://meritbbs.unimaas.nl
http://www.infonomics.nl
email: secr-merit@merit.unimaas.nl

