

MERIT-Infonomics Research Memorandum series

 Expert Systems: Aspects of and

Limitations to the Codifiability of
Knowledge

 Robin Cowan

 2001-005

MERIT – Maastricht Economic Research
Institute on Innovation and Technology
PO Box 616
6200 MD Maastricht
The Netherlands
T: +31 43 3883875
F: +31 43 3884905

http://meritbbs.unimaas.nl
e-mail: secr-merit@merit.unimaas.nl

International Institute of Infonomics

PO Box 2606
6401 DC Heerlen
The Netherlands
T: +31 45 5707690
F: +31 45 5706262

http://www.infonomics.nl
e-mail: secr@infonomics.nl

Expert Systems: Aspects of and Limitations to the Codifiability of Knowledge

Robin Cowan

March 2001

Keywords: knowledge, codification, expert systems, knowledge creation, information

technology

JEL: O31 O32 D83 D89

Abstract

This paper discusses recent attempts to codify knowledge through the development of

expert systems in several different contexts. This paper argues that in the context of

expert systems there is some knowledge that can be codified (turned into an expert

system essentially in its entirety), some for which this is partly possible, and some for

which it is basically impossible given the state of today's technology. We look

specifically at the expertise of three different types of workers: the artisan, the

repairer and the strategist, and differences in natures of their expertise, and ask what it

is about these different tasks that makes human expertise easy, hard or impossible to

capture in codified form. The studies also show though that different types of

knowledge lend themselves with different degrees of compliance to the codification

process.

Acknowledgements

This paper has been prepared under the EC TSER Programme’s TIPIK Project

(Technology and Infrastructure Policy in the Knowledge-Based Economy - The

Impact of the Tendency Towards Codification of Knowledge). I are grateful for the

excellent research assistance of Lorri Baier and the comments and suggestions

received from colleagues in the TIPIK Project, particularly Patrick Cohendet and

Dominique Foray.

Robin Cowan

MERIT, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands

Phone: +31-(0)43-3883878, Email: r.cowan@merit.unimaas.nl

Introduction

Knowledge codification involves turning knowledge, or parts of it, into messages that

can be processed as information. Consequently, codified knowledge is constituted by codes or

messages. The codes or messages are expressed in symbols, but for these symbolic

representations to be useful, both the representational rules (grammar) and the notation

(vocabulary) must be stable, and to some extent, standardized. There must be agreement

between or among codifiers and users of codified knowledge, who of course could be the

same individual or entity, regarding meaning. Knowledge so codified is easier to distribute,

store and recall. These activities are all valuable, and codifying knowledge lowers the costs of

all of them.

Whether or not all knowledge is in principle codifiable, in practice some is not. This

can be seen simply as a matter of cost — the activity of codification has an output, and this

output has value, so the activity has benefits. But it also has costs in terms of labour, capital

and material. Thus whether a piece of knowledge is codified will depend on the relative costs

and benefits of doing so at each level of the process. Of course the evaluation of the relative

costs and benefits can change over time and with circumstances.

Cowan et al. (2000) propose a taxonomy of knowledge as a way in to the issue of

codification and codifiability. All deliberate activity involves knowledge on the part of the

actor. That knowledge can be partitioned in a variety of ways, but for our purposes, initially

we can see it as codified or not.1 To be codified, knowledge must at the least be articulable.

So there are two explanations for the non-codification of a piece of knowledge: either it

really is inarticulable and therefore uncodifiable; or relative to the benefits, the cost of

codification is too high. In either case, the knowledge will remain tacit. When this is so, any

storage, transfer, or use of this knowledge must continue to rest in the hands of the experts.

Given that time and resources are finite, and making quite natural assumptions about the

distribution of features of knowledge it seems safe to state that some knowledge will remain

uncodified, and therefore the domain of human experts.

To examine the proposition that some codification can be too costly (or simply

impossible) in some cases, this paper discusses recent attempts to codify knowledge through

1 We should point out that often activities which appear to use uncodified knowledge are in fact using knowledge that has been
codified but internalized by the agent. An economics professor for example, uses the knowledge stored in principles text books all
the time, but rarely refers to the books themselves. This is a case of codified knowledge that has been internalized, referred to as
an example of a “displaced codebook” by Cowan et al. (2000).

2

the development of expert systems in several different contexts. Because writing an expert

system is an explicit attempt to transfer knowledge from a human to a machine through

some sort of message creation process, this seems a good place to look for insight into the

process of codification. In a discussion of knowledge acquisition for expert systems, Tzafestas

writes that the knowledge which permits experts to do their jobs, and indeed to be experts, is

largely tacit. “The knowledge engineer has to explore this tacit knowledge and to present it

in a form which can be understood by the experts (for verification) and by the users for

beneficial use.” (1993, p. 30). This paper argues that in the context of expert systems there is

some knowledge that can be codified (turned into an expert system essentially in its entirety),

some for which this is partly possible, and some for which it is basically impossible given the

state of today’s technology. These studies we refer to demonstrate attempts to model the kind

of knowledge typically employed in industrial settings. We look specifically at the expertise

of three different types of workers: the artisan, the repairer and the strategist, and differences

in natures of their expertise, and ask what it is about these different tasks that makes human

expertise easy, hard or impossible to capture in codified form.

But before beginning the analysis, a brief excursus on the nature of the codification

process is in order.2

The codification process: messages, models, languages

The most widely recognised aspect of the codification process, in which knowledge is

transformed into information, is the creation of messages, expressing in a symbolic

representation existing, or created, knowledge. Creating messages often refers to the actual

process of distributing information, for example, one person telling another or writing down

what he knows. That a message can be successfully created, though, implies the existence of

some infrastructure. There must be a language in which the message can be “written” and

“read”. But a language which is suitable to codify the knowledge in question itself pre-

supposes a both model of the phenomenon and a vocabulary with which to name parts of

the model and their interactions.

It is important to point out that in creating an expert system, say a system to do

medical diagnosis, the codes we refer to are not the messages to the user: “What is the

infection? … From what site was the culture taken? … Is the organism rod or coccus (etc.)?

… This is a streptococcal infection, with certainly factor 70%.” but rather the representation

2 For a more complete discussion of this process see Cowan and Foray (1997).

3

of the knowledge (of a doctor) that underlies this diagnosis. What is codified, for example, is

the tree structure of the inquiry he uses to arrive at his diagnosis, for example: “If the

organism stains grampos AND has coccus shape AND grows in chains THEN there is

suggestive evidence (0.7) that the identity of the organism is streptococcus.”3

In its most general form, then, codification is a process which involves not only the

creation of messages, but also the creation of models, since modelling knowledge is a

prerequisite to transforming this knowledge into information. In this sense, codification is a

central method for producing knowledge. Codification cannot in general be considered as a

simple transfer or translation operation, then; there is always, at some stage, an aspect of

creation. This aspect of codification can entail fundamental transformations in the way

knowledge is organised, so the codified knowledge-base cannot cover exactly the tacit

knowledge-base for which, in some sense, it acts as a substitute. This is particularly so in the

case of expert systems: “the imitation of expertise, because it is a process of automation of

knowledge, is possible only at the expense of the “active” transformation of this knowledge; it

is hence in itself a creator of expertise” (Hatchuel and Weil, 1995, p.25).

Different types of knowledge demand different types of languages — music,

mathematics, expert systems, novels, all have different languages associated with their

codification. Some languages are “generic” and can express a variety of types of knowledge

(for instance, it is possible to some degree to write mathematical problems in natural

language); some, like some computer languages or the jargon of esoteric academic disciplines,

are very specialised. These languages must be developed before any messages can be written.

Development may be undertaken as an explicit activity or it may emerge from the activities of

those working with models and messages. But in either case there is a cost implied, as people

expend time and other resources in activities that tend to the creations of a stable,

standardised vocabulary.

A language must exist, but central to any language are concepts and vocabulary. It is

the creation of those two things that the modeller is doing. The existence of a vocabulary,

which pre-supposes a model (so that if one does not exist it must be created), is necessary for

the ability to create messages.4

References to languages mean that a minimal requirement to be a potential user of

the information is that one must understand the language in which the knowledge is

3 These examples are taken from the MYCIN system, one of the first expert systems, designed for medical diagnosis of certain
blood infections. (This is rule 037.) See Davis et al. (1977).

4 For a discussion of this and related arguments about the philosophy of science, and the philosophy of reference, see the works of
Hilary Putnam, for example, 1987.

4

recorded.5 This is true whether the language is English or French, a computer language or

mathematics. Knowledge is easier to codify and codified knowledge is more effectively

diffuesd within a community made up of agents who can read the codes. (We should point

out that the ability to read the code can be an important form of tacit knowledge.) Diffusion

and use of codified knowledge are thus dependent upon the initial investment required to

build a community of agents, a clique or a network the members of which can read the

codes. This ability to produce and receive signals in a language, even a very common one,

requires prior and irreversible investment (Arrow, 1974, p. 39).

The relations between the three layers are complex: sometimes pre-existing languages

and models are available for the codification process; sometimes codification requires the

creation of a new language and some new modelling. In most cases, there is some degree of

creation at both the level of languages and models.

Expert systems designers often refer to the knowledge (or expertise) acquisition issue,

(see for example Tzafestas, 1993, chapter 2) and the way they describe it can be interpreted in

the terms set out above. For example, there are two approaches to fault diagnosis expert

systems: “model based approach (using mathematical techniques of analytical redundancy)

and knowledge based approach (which tries to imitate the reasoning of human fault

diagnosers and operators).” (Tzafestas, 1993, p. 39). In both cases a model of some sort must

be built: in the first case, a model of the machine; in the second, a model of (one part of) the

thought patterns of an expert. Of course, few expert systems are pure cases of one type or the

other, and typically building a system involves both kinds of knowledge. Some knowledge is

acquired from written documents. Construction of the fault diagnosis system for compressors

at the Toyoda Automatic Loom Works used books, manuals and service guides. The service

guide illustrated each part of the compressor and gave information about possible failure

causes. The existence of these documents provided the basis for a consistent language, and

each contained structured descriptions (which can be seen as a model) of different parts of

the machine in question. This greatly simplified building a model of the machine. Other

knowledge comes from the experts themselves.6 Part of their expertise had been codified

before the construction of the expert system began. There existed a decision tree diagram,

“designed by the human expert … [and] used to instruct workers … on the expert’s fault

5 The word “recorded” is deliberately ambiguous. Codifiers must understand the language through which the knowledge is
systematized and stored. Users must understand the language in which messages are written. So, for example, developers of a
medical diagnosis expert system must understand Lisp, but users of it must understand something like a dialect of a natural
language.

6 The former is sometimes referred to as “deep knowledge”, the latter as “shallow knowledge”.

5

finding technique. Some of the significant rules in the knowledge base are comprised of the

cause and effect relationships as represented in the tree diagram.” (Chen and Ishiko, 1993, p.

197). The diagram is clearly a model of the reasoning of the expert.

Four Cases of Expert System Creation

In this section we examine four expert systems, drawing attention to the types of

knowledge at issue, problems in their creation and what in some cases appear to be inherent

limitations in codification.7 Each has a different character regarding the extent to which it

can be codified, and the problems inherent in its codification.8

Fixed goals and linear processes: the artisan’s expertise

The job of the “artisan” involves a achieving some well-specified final goal

(transforming an input into an output) through a sequence of known steps. Planning

production is a typical task: “Planning is a process that searches for a sequence of actions (or

operations) that will achieve a goal statement.” (Chang and Wee, 1993, p. 291). This

expertise can often be represented explicitly as a list of instructions (think of a recipe book or

an instruction manual) and is sometimes referred to as technical- or doing- know-how. This

expertise allows the artisan to determine the steps between an initial state and a desired final

state, passing through intermediate states by well-recognised and determinate steps or

actions. It is typically easily and effectively archived, and expresses the “simplest” form of

knowledge in the breakdown of industrial job expertise, that is, knowledge that can be

transformed into a more or less linear process of discrete steps (or actions/transformations)

with a predictable outcome. This is the type of situation in the first case we examine.

7 The cases we discuss in detail are those presented in Hatchuel and Weil. We have used their description of the cases but have re-
interpreted them in terms of the theoretical views on codification discussed above and in Cowan and Foray (1997) and Cowan et
al. (2000). There are many case studies of expert systems in the literature (see for example, Kaewert and Frost, 1990 Badiru,
1992, or Tzafestas, 1993 as three collections), and we refer to some of the similarities between these and those of Hatchuel and
Weil.

8 Hatchuel and Weil refer to three different types of knowledge: doing know-how; understanding know-how; and combining
know-how. (For a discussion of different types of know-how see Lundvall and Johnson, 1994). Following Cowan et al. (2000),
to the extent possible we avoid discussion of types of knowledge. Instead we focus on types of knowledge activities, attempting to
avoid debates about whether we are observing a case of this or that type of knowledge. Further, it is, in the end, codification of the
knowledge involved in particular activities that is important, rather than codifying certain types of knowledge, thus by focusing
on activities rather than knowledge we can, perhaps, avoid having to map from an economic activity to its type of knowledge and
thence to its codifiability, and attempt to move directly from a knowledge activity to discussions of the ability or usefulness of
codification in that setting.

6

TOTEM: Automated Production Routings

Around 1992 a medium-sized firm that processes gold, silver and platinum

experienced a rapid increase in the number and variety of products it manufactured. This

implied a significant increase in the number of “production routings” the firm had to create

and execute. A production routing is a document specifying the form and quantity of some

required raw material, the machines best suited for each operation in its transformation, and

a sequence of operations for producing the final product. For this firm more than half of the

firms orders were unique, so each order created a new problem, and the firm typically

processed several orders at the same time, often using the same machines. Rather than

produce a huge production routing library, and in order to keep pace with an accelerated and

more complex production schedule, the managers decided to develop an expert system to

generate production routings. The system was constructed in a shell called TOTEM,

(Traitement Optimisé des Temps et des Matieres), chosen for its ability to represent the

planners’ expertise in the form of simple rules.

TOTEM began as an empty structure and was gradually fed the expertise needed to

produce coherent, accurate routings. Expertise was formally expressed as conditional rules of

the “if…then” type: “If thickness decreases by 10% then length will increase by 10%.”, which

were elicited from the employees’ descriptions of their decision-making processes.

As the system was being created, employees enunciated facts about production

routings, and each new fact created a new inference rule, thus propagating the system’s

reasoning until no new facts were being discovered. At this point the system could be used to

create complete routing documents. Each rule represented an extremely small fragment of

expertise, but adding it to the system must be seen as the creation of a new message —

codifying one more piece of knowledge. These messages were meant to express all of the

relations among the elements of the metal refining process, including the transformation of

various characteristics of the product as it passed through its route, the choice of operations

and machines, as well as specifications for machine settings, and so on.

While formulating the rules it became clear that to avoid excessively time-consuming

searches by the system (which evaluates between 500 and 1000 parameters per routing

calculation), it was necessary to structure the knowledge in different levels. To do this

effectively involved parsing the knowledge into pieces that fit together “at the same level”.

Implicitly, this involved creating a model both of the decision-making process and of the

knowledge involved in it. Herein lay the modelling process. Level one distinguished

knowledge according to product families. Level two broke this knowledge down into

7

autonomous areas of expertise such that each could deal with a different aspect of the

problem (e.g., expertise on a particular machine or a specified process). The areas of expertise

were then arranged hierarchically and divided so that the system only worked on a small

number of potentially useful rules at one time. To ease computation requirements, the system

was not constructed to search for the optimal routing, but rather merely one that met the

requirements satisfactorily.

The process of codification created several thousand “messages”, each one

representing a rule used by the firm’s routing experts. These “fragments of expertise”

corresponded fairly well to the way planners described their own process of creating a

routing. At this level the creation of the system represents a relatively straight-forward

transfer of knowledge from humans to machine code. The model of the knowledge was a

relatively simple construction of a set of “if … then” statements, and their implications

regarding connections between different parts of the system. While modelling the

knowledge created a coherent system and explicitly described the links between different

parts of the knowledge and the process of decision-making, it created few strikingly new

concepts. Thus it was possible to express the model using natural language, though due to

the “if … then” structure of the rules there was of course heavy emphasis on Boolean

expression. In the production planning process the transformation of thoughts into

decisions represented a relatively linear process and thus one that was not overly complex to

model. However, as the number of rules increased, the costs of using this simple model (of a

list of decision rules) rose, and in order to maintain efficiency and flexibility, the model was

adapted to better suit the requirements of the orders and the constraints of the shop floor.

The general expertise was organised into a detailed structure of different areas of expertise.

This micro organisation of the rule-structure created a macro-level process that closely

resembled a manually created production routing, but in fact the “reasoning” of the expert

system differed from that of a human route designer. This suggests that there was non-trivial

knowledge creation in constructing the model on which the system was based.

This system successfully automated a task that had been done manually, and did so on

the basis of the knowledge or expertise of the operators. It codified the decision making-

process, though at the micro level the model implemented turned out to be different than

the model implicitly used by the manual operators. Nonetheless, the system created a macro

structure which, when used, closely mimicked the performance of the humans.

Other examples of similar success stories exist. Digital Equipment Corp. (now

absorbed by Compaq) developed expert systems in many areas of production and

management. MATCHER matches the components used in cancelled orders to those

8

required by orders in progress in order to save re-stocking time. BuildArea Selector assigns

production of orders to build areas and schedules the orders of production (Kaewert and

Frost, 1990). Texas Instruments has created an automated manufacturing centre in which an

expert system controls robots, vision systems, machine tools, sensors and so on. Given data on

monthly part needs, the system plans, creates material lists, schedules production and

monitors the equipment. Human involvement is mostly restricted to entering parts lists. (See

Herrod, 1988.) A system developed by InSol Inc. creates bills of materials-requirements for

warehouse storage systems. Similar to the Texas Instruments system, the operator enters data

on requirements, in this case the nature of the structures to be built, and the system produces

the bill of materials using processing that is completely transparent to the user. (See Jindia,

1990.)9 In all of these cases, the decision-making of humans has been successfully

represented in an expert system.

TOTEM and these other examples have several things in common which jointly

make it feasible to create an expert system in which human expertise is (close to) entirely

captured. In all of the examples the problem solved by the human and then machine expert

was a case of straightforward means-ends problems or decision structures. Given the goal,

there are specific, necessary steps that must be followed to realize it. In this case “backward

chaining” is possible: one can “backtrack from a goal to the paths that lead to that goal.”

(Badiru, 1992, p. 24). But backward chaining is possible only when certain conditions are

satisfied. First, it must be that the goal of the activity is known in advance, and does not

change as the activity progresses. When a goal changes as a consequence of trying to achieve

it, backward chaining is simply not possible. Intimately connected to this condition is that

the reasoning employed in the activity be relatively straight-forward means-ends reasoning.

This means-ends reasoning is itself decomposable into a sequence of linear steps or stages

each one of which lends itself to its own backward chaining. So an identifiable sequence of

intermediate steps or goals, leading to the final goal, each one subjected to simple means-

ends logic creates a natural situation in which backward chaining can work very effectively.

For chaining to be effective, though, one must also be able to enumerate the entire set of

problem-solution combinations. Without this completeness, and in addition a relatively low

level of uncertainty in these combinations, codification will necessarily be incomplete, and

any expert system will demand significant human intervention.

The TOTEM case exhibited all of these properties, so backward chaining, and a

complete expert system, was possible. (The success of the other examples listed above suggests

9 For many more examples see Badiru (1992), especially chapter 11.

9

that they too satisfied these conditions. See Badiru, 1992.) The problem-solution rules in

these cases (and in TOTEM in particular) tended to be of the simple if … then structure so

the codes or messages they created were relatively straightforward, and as individual messages,

self-contained (and already existed largely intact, complete and coherent in the minds of the

human planners). It was also possible to identify all of them. The sequential structure of the

building process made this feasible. Any time the shop encountered a situation that was not

already included in the codes, the operators were able to describe the rule they used to make

the required decision. Simple “if … then” logic, combined with the fact that decisions could

be taken to a great extent sequentially, created a tree-structure for the route design process.10

Further, the processes involved are very linear and could be described in a sequence of discrete

steps which must take place in a particular order. The process between initial and final state

can be broken up into a sequence of largely self-contained sub-processes which simplifies

greatly the structure of the expert system. This is true both of the physical processes that are

being planned (a production path, inserting surplus parts into an existing production plan)

but also of the planning itself.

In the creation of the system, TOTEM and the others mentioned all exhibited

“exploratory neutrality”. That is, the only goal in creating these systems was to automate

well-specified operational sequences that already existed. Building the system was not

intended to create new knowledge or information. New knowledge was created in

TOTEM, in that a new model of the decision-making process emerged, but this can be seen

as a new description of an existing process rather than to find new information. Further, the

systems were not being designed to make any choices or evaluate any trade-offs between

over-arching goals such as quality, cost, delivery times and so on. Development of the

knowledge environment did not raise any issues beyond itself. Thus the task of the codifiers

was well-defined, and very circumscribed — a very particular process was to be automated.

The relative simplicity of the implicit logical structure and the presence of exploratory

neutrality together imply that the modelling process in TOTEM (and presumably in the

other examples as well) was in important respects relatively simple. This is not to say that it

was easy or fast, rather it is to say that the model itself was not overly complex. Knowledge

10 In the case of TOTEM this is in fact a simplification, though not a gross one. The system is given certain parameters, (number
of output units, size, material, tolerances and so on) and on the basis of those explicit parameters generates as much of the routing
code as is possible, using the Boolean decision structure described. Then, having completed that stage, it calculates further, implicit
parameters (such as yield coefficients), and makes further inferences based on those parameters. Note that even in this more
complex procedure the algorithm is very linear.

10

was divided into identifiable pieces which interacted in relatively straight-forward ways.

When the TOTEM system ran into the performance limits of the first version of the

model, the necessary modifications were significant in terms of performance, but not

excessively costly. Thus codification created new knowledge in the form of a new model of

the process, but because the costs of doing so were relatively low, codification was relatively

complete.

It is also worth pointing out that in the TOTEM example the knowledge

environment was relatively stable.11 Materials, machines and operations may have varied

according to the demands of specific orders but the basic, component operations involved in

turning the inputs into outputs were not changing, though of course which of them were

used and in which sequence changed from order to order. This meant that essentially once

the materials were obtained and the machines were available the expert system could do its

work without interference.

Categorization and analogy: the repairer’s expertise

A very common activity in which expert systems are employed is fault diagnosis and

repair. These sorts of systems are used in medical diagnosis, machinery repair, fault-finding in

industrial processes and so on. It is almost universally the case, though, that these systems are

designed to assist experts rather than to replace them:

The maintenance of a complex item of equipment involves a
diagnostic procedure incorporating many rules as well as
judgement decision by the maintenance personnel. Experience
is an important factor in determining the ease with which a
mechanic can locate a failure in a component and implement
the appropriate correction. Expert systems are now being
utilized to assist maintenance personnel in performing complex
repairs by presenting menu-driven instruction guides for the
diagnostic task. Badiru (1992, pp. 294-5, emphasis added).

Diagnosing and repairing any fault requires a combination of activities designed to

solve a problem that is often well-specified only in a very general sense, and is in addition

often a problem that has not been seen before. This task is typically is more complex than

11 See Cowan and Foray (1997) for a discussion of codification in stable and unstable knowledge environments. The general idea
is that every knowledge activity takes place within a broader context or knowledge environment. Sometimes this environment is
changing, as would be the case, for example, if there was an episode of rapid, extensive advance in knowledge or technology, or if
a new field was opening up and there was not yet consensus about how to formalize it or how to proceed in investigating it. On the
other hand, often knowledge activity takes place in a stable environment: there is consensus on how to model the class of
phenomena at issue, disputes over modelling, jargon, vocabulary and so on have been settled, and much of the activity is
standardized and perhaps even routinized. The economics of codification are very different in the two cases.

11

that of the artisan, involving as it does both investigation and analysis in order first to find

the cause of the problem and then to determine a solution. Rather than simple deduction,

typically what is involved is an inductive process in which identifying the cause of a problem

is done through generalisation. That is, a problem is recognised as belonging to a certain class

of situations all members of which have the same cause, and thus demand the same or similar

corrective measures. To complicate matters, however, this “cause” may in fact be “multiple” in

the sense that several causes produce this class of effects, or worse yet, the effect may belong

to the “cause unknown” class of situations. In the first case the operation of repair is relatively

straightforward, once the identification is complete. In the second case, repair proceeds

through trial and error, though on a circumscribed set of causes. In the final case, the

repairer’s expertise is often manifest as “having the right hunch” or remembering what

appears to be a similar repair done in the past. Even in the first case, where a single cause is

determined, the identification of this problem as belonging to a specific class can create

significant difficulties. While deductive algorithms have been developed and are highly

advanced, inductive algorithms are much less so. Thus a major challenge in codifying the

expertise of the repairer lies precisely in this inductive step. Fault diagnosis systems often

attempt to do this by classification. Classes of faults are generated through historical records

of previous faults, and the system attempts to put the fault it is diagnosing into one of the

classes. The systems DIVA and EXACT had similar performance features: their diagnoses

were based on historical generalizations and classification. They are fast (EXACT is claimed

to be as good as a human in terms of speed and accuracy) but they cannot solve problems

“which have never been encountered in the past and are thus not included in the knowledge

database.” (Chen and Ishiko, 1993, p. 206).12

 Clearly, repair cannot be described as a linear process from start to finish with a

rehearsed and predictable outcome; rather “…it intermingles action and investigation in an

ever-changing pattern” (Hatchuel and Weil, 1995, p.36), sometimes unsuccessfully.

Therefore, unlike knowledge which is codified, and in a sense “fixed” in a recipe book or a

dictionary, “the repairer’s expertise cannot be defined out of context, it requires that the

practical and social framework of the reparation [sic] be constructed simultaneously.”

(Hatchuel and Weil, 1995, p.37). The difficulty, indeed, lies in the fact that the repairer

cannot simply follow a set of rules, he must use his judgement.

12 DIVA is used “to help the operating personnel to interpret the evolution of vibrations and to diagnose the developing faults” in
turbine generators, (David et al., 1993, p. 212); EXACT is used for compressor trouble-shooting, (Chen and Ishiko, 1993). The
quotation refers explicitly to EXACT. When DIVA encounters a problem it does not recognize, it gives the user the message “I do
not recognize your problem! I guess I am not (yet) competent enough …” (David et al. 1993, p. 218).

12

Cornélius

The manufacturing sector has undergone rapid and extensive changes in recent

decades, and the introduction of “mass customization” has increased the complexity of both

manufacturing processes and machinery. A firm in the parts manufacturing sector studied by

Hatchuel and Weil responded with an automation programme, thereby increasing the

complexity of its machinery base, and increasing the need for maintenance of the new, more

complex capital. In this context an expert system devoted specifically to industrial diagnosis

and maintenance, Cornélius, was proposed.

The facility chosen to test the feasibility of automation a flexible manufacturing cell

in the machining workshop. It was thought appropriate for three reasons. First, because the

factory’s entire output passed through this cell, it was at risk of becoming a production

bottleneck. Thus the ability to diagnose and repair problems quickly and accurately, and to

the extent possible automatically, was highly desirable. Second, its problems were

representative of those experienced by other NC machines in the plant, so an expert system

that could handle the problems of this cell could easily be adapted to other areas of the plant.

Third, there were several experienced operators and maintenance workers who could lend

expertise to the project.

The task of the expert system was to find the source of any failure, to diagnose it and

to instruct the operator how to effect repairs. The underlying rationale was that an

important source of savings would be to shift at least some of the repair tasks from

maintenance personnel to the operators, who were not explicitly trained in maintenance.

Cornélius was chosen as the software package because of the relative simplicity of its basic

concepts and what appeared to be the close relationship of its reasoning to that of a

theoretically trained technician.

Given the diagnostic nature of the project, a system that represented knowledge in a

set of simple “if A then B” statements was not enough since, due to the pervasiveness of

multiple possible causes of defects, the statements would actually be of the form “if A then B

or C or D or … ”. Further, since a large proportion of the breakdowns have some unique

aspect it would often be unclear which rule would apply. The problem faced by the expert

system was much more like unravelling a mystery than simply applying diagnostic rules. To

solve this puzzle, a system would somehow need access to a model of the internal functioning

of the machine, and in particular to the way in which different components related to each

other. Eventually, the system was designed in two parts: a generic application that

reproduced a certain mode of reasoning, and a knowledge database which provided the raw

13

data to which the reasoning was applied. These two parts combined to create a model of the

machine and the way a repairer would normally address this model.

How does this system diagnose a machine failure? In its representation in the expert

system, the flexible cell is divided into its main component processes, such as a door opening

or closing, conveyor movement, tool changes and so on. Symptoms of failure lead the system

to invoke particular subroutines: if it receives a “door not open” signal, it invokes the “suspect

door not open” function. Since there are a multitude of reasons why a door may fail, the key

is rapid identification of the correct cause. Figuratively, the expert system represents each

component system and function by a diagram, similar to an electric circuit diagram, the point

of which is to describe the components according to their relations with each other. (These

“diagrams” are stored in the knowledge database mentioned above.) During operation of the

cell, signals are sent by each of the components describing its states and actions. The system

relies on maps of normal and deviating machine behaviour (which are logical translations of

the circuit diagrams) to monitor and act.

The expert system scans the maps, gathering information, (by inference or by asking

the user questions) on the state of the components. The user’s answers allow the system to

infer either a normal or deviating state of a component. The diagnostic process continues,

either by logical inference or by further questioning of the user, until the faulty component is

detected. In case one is not, the system suspects a different function according to the way

these functions depend on each other, until no further inferences can be made.

One early difficult conceptual issue was to decide whose expertise was to be modelled

— the technician who had installed it, the maintenance fitters who maintained it, or the

operators who were responsible for restarting it when necessary. Each of these actors could

hold relevant pieces of the diagnostic puzzle. The answer emerged during the process of

codification: none alone had expertise complete enough to create the expert system. A more

“general” expertise had to be constructed and then encoded. Interestingly, language was a

potential stumbling block. Different jargons were in use by these different types of agents,

and this created a potential difficulty in codifying their knowledge in such a way that others

could use it. Language began as non-standardised.

The first step of the diagnostic process was to determine the most frequently failing

functions. As a consequence, the first modelling task was to identify these functions. This

identification was a central part of writing the databases that underpin the system. From

here, though, the task of modelling the workings of the system, and the technical inter-

relations among the different functions, seemed monumental. Fortunately, it was greatly

facilitated by an existing maintenance manual which described components and procedures

14

of available tests.13 This manual provided a complete description of the flexible cell and its

components, the most frequent sources of failure, diagnostic procedures and emergency

repairs. From the point of view of creating the expert system, one major contribution of the

manual was that in the course of its creation the ambiguities in the technical language had

been removed. This solved the language problem, and created the necessary standards.

The members of the group agreed on clear and distinct definitions for the cell’s

components, and hence much time was saved in the course of formalising the knowledge

and in developing the language in which to do so. (The procedure took only 2 months.) The

modelling process was trickier. It could not consist of a mere translation of functional plans

for the cell. Rather, the important diagnostic elements had to be extracted from the

exhaustive list of relations in the functional plans.

What caused a great deal of difficulty in designing the reasoning rules was that the

typical serviceman’s approach could not be described in diagnostic terms alone. In fact,

servicemen relied much more on past experience; their first questions seemed to be whether a

particular failure was the same as or related to one seen in the past. Thus it was suggested

that this system should not start with a list of questions designed to define a cause, but rather

with a list of actions to perform based on the preliminary analysis of the causes of the most

frequent failures. While modelling the machine was relatively straightforward, explicitly

modelling the casual links among the parts of the machine was more difficult. But a dynamic

model of the repairer’s expertise, which would be necessary to make his expertise useful to a

non-expert, turned out to be much more difficult yet. This is due in large part to the fact that

it involved considerable pattern recognition, and an iterative process of recognition and

action.

Interestingly, after the first version was tested, the system’s designers re-wrote the

knowledge databases to reduce the number of components described, and revised the

diagnostic maps to be more economical. The dynamic process of creating the expert system

led to the creation of new knowledge, necessitating the creation of new messages and models

with which to structure them. Even though in the beginning it was not clear to the project

leaders what the final outcome would be, in the end this knowledge turned out to be

extremely useful in increasing the overall reliability of the cell, as part of the knowledge

created indicated precisely where the most important and common failures were occurring

and to what they were linked.

13 The manual had been prepared recently by a group consisting of a workshop supervisor, two artisans, a representative of the
maintenance service and a representative of t he innovation group. Notice that this group included several different types of
expertise, each of which contributed to understanding how the cell functions.

15

This particular expert system, however, has not been used in the way it was originally

intended, which was to make it possible for non-experts to take on a more active role in

repair. It has turned out to be extremely expensive (and time-consuming) to create and

maintain the needed knowledge databases. Further, even though specifically designed to be

user-friendly, it has proved difficult to use for those without significant amounts of expertise

ex ante. The knowledge codified in this system was useful to those who were in a sense the

sources of this knowledge, as it formalised their knowledge and the processes they followed.

This permitted them to work faster and more reliably. However, use of the system was

dependent on their own pre-existing expertise, and in particular on their practical experience.

We observe here an interesting interplay between environmental stability and

codifiability. Contrary to a general tendency wherein stability of environment increases net

benefits to codification, in this case the opposite seems to be true. Because the environment

was stable the experience accumulated by the operators retained its value and led to ever

increasing ability to make good and rapid judgements about where to begin and how to

proceed. Again the issue is pattern recognition and generalisation, a venue in which humans

in general still seem to have an advantage over computer technologies. Imagine, though, for

the sake of contrast, a repairer of either a new machine or a machine that is constantly

changing. Here, experience is of little use, and human ability to generalise from past

experience does not help. Of more value will be the user or instruction manual, which by

definition contains codified knowledge, and is thus more easily embedded in an expert system

to aid in the repair. Stability of the environment is central to the ability to codify the expertise

of the artisan, and indeed raises dramatically the value of doing so. But here the opposite

seems to be the case. While stable knowledge makes codification possible, the stability of the

environment makes the value of codified knowledge decrease relative to the unstable

environment case.14

In the case of a repairer, the final goal is fixed, and readily identifiable. Nonetheless,

backward chaining is not possible. The problem is that the steps to achieve the final goal are

unclear before the fact. There are too many possibilities and initially not enough is known to

be able to tell the effects of acting on them.

The Cornélius project was only a partial success. While the initial goal was to make it

possible for non-experts (namely operators) to effect repairs to the machine, in fact this did

not happen. Nonetheless, some knowledge was codified, and in the process some created,

14 In the jargon of Cowan et al. (2000) by the time the environment has stabilized, the codebook has been displaced — the
repairer has gained enough experience that he knows pretty well what is in the manual, and his expertise lies in knowledge
(gained from experience) of things not in the manual.

16

and this codified knowledge was of value to repair specialists. Cornélius is not unique.

Descriptions of other fault-diagnosis expert systems indicate the same feature. General

Electric’s CATS-1, now called DELTA, was perhaps the earliest, and best-known system

for trouble-shooting. This system helps maintenance personnel in railroad repair shops to

isolate and repair a variety of diesel-electric locomotive problems (Pratt, 1984, cited in Chen

et al. 1993). Ford’s DEX.C3 provides assistance to mechanics at Ford dealerships in

diagnosing faults in three-gear automatic transmissions (cf. Bungers, 1986). The PAR (Pulse

Acquisition Radar) system of the US Army “assists a PAR mechanic in troubleshooting … It

is intended to complement technical manual instructions and mechanic expertise.” (Badiru

1992, p. 298) Bell’s Automated Cable Expertise …was designed to … help managers to

investigate the data contained in the complaint system.” (Chen et al. 1993, p. 196; cf.

Rauch-Hindin, 1986). AT&T Bell’s interactive Repair Assistant (IRA) “… provides

troubleshooting advice to the telephone company’s mobile field technicians.” (Chen et al.

1993, p. 196. cf. Horton et al., 1988). 15

What we observe in the Cornélius case, and what is clear in the descriptions of so

many fault-diagnosis systems is that the knowledge or expertise involved in fault diagnosis

and repair is not simply raw material that needs to be memorised and recorded. Instead it is a

theoretical construction interlinking choices and raw data, and making inferences from one

to the other. The key to effective “understanding” is very abstract and the expertise includes

generalisation and pattern recognition as central activities. With contemporary technology,

both computer hardware technology and technologies of representation of (abstract)

knowledge, these activities are both still very difficult. Both DIVA and EXACT simply stop

when they encounter a situation they “have not seen before”. Thus modelling the knowledge

used is extremely expensive, and possibly still impossible. The inference-making aspect of this

expertise implies that it can be highly context-dependent since the context will determine

which parts of both data and logic should be employed. Without a coherent model of the

artefact or process being “repaired”, messages could not be organised in a way that was easily

accessible to non-experts. Experts, though, have internalised this model so the messages were

15 The descriptions in the text here are either quotations or paraphrases of descriptions of these systems. (In every quotation the
emphasis has been added.) The idea that appears over and over in descriptions of fault diagnosis systems is the assistance that they
provide to already-skilled technicians. There are, it should be noted, a small number of exceptions: Cooker checks large sterilizer
cookers for Campbell Soup. Used day and night to “diagnose cooker problems without the need of consulting human experts.”
Termi-point Expert Maintenance System (TEMS) (an expert system for supporting wire-bonding machine maintenance) “can
diagnose certain machine problems in a few minutes while the human experts solve the same problems in an hour or more.”
(Chen and Ishiko, 1993, p. 196. cf. Dallimonti, 1986).

17

coherent to them. Thus, the use of the system cannot be separated from the expertise of the

user, and codification will necessarily be incomplete.

Balancing conflicting goals: the expertise of the strategist

Strategy involves both making plans and finding the most effective means to carry

them out. This contrasts with the tasks of the artisan or repairer, both of whom take their

final goals or desired end state as given and merely seek effective means with which to

achieve them. The strategist, often a corporate leader, strategic planner of the co-ordinator of

a team of professionals must formulate both plan and means simultaneously. Here, the

expertise has three aspects. One concerns the tasks to be performed, resources to be mobilised,

goals to be met and so on, all of which can be relatively easily defined and recorded. The

second involves combining, arranging and co-ordinating events, activities and individuals

into a coherent unit or network to decide upon and achieve the desired ends through the

means chosen. The third, and most difficult, involves making trade-offs among conflicting

goals or objectives. The forms and methods of decision-making involved in these activities

can be very difficult to formalise.

The problem is that backward chaining is simply not possible. As the problem is

explored, the goal can shift, and when this happens, it becomes extremely difficult to

compare (in a mechanical way) different courses of action. Of course, there are final goals

that do not change: maximize profits of the organization; get all trains safely and quickly

through a station and so on, but the distance between the immediate means and the final

end is quite large, and there is no obvious (linear) path linking the possible actions with the

final outcome. There can be many possible actions, and tracing each of them to see their

effects on the final, immutable, goal is simply too difficult. In this case, a common strategy is

to retreat to intermediate goals. For example, the profits of a conglomerate are intimately

related to the profits of each subsidiary, thus if it is too difficult to plan for the conglomerate

profits, we should look instead at the profits of all the subsidiaries. But notice that in making

this move we have changed from a single final goal to several intermediate goals, and these

intermediate goals can, and probably typically do, conflict with each other.16 This is the point

at which strategic expertise enters: how to trade these goals off against each other.

16 Chang and Wee (1993, p. 291) put it this way: “Normally an original goal statement is too complex or too abstract to achieve
through a single operation. It is often necessary to break down the original goal into smaller, simpler subgoals. In an ideal
situation, a subplan for each subgoal can be formulated independently and a compete plan can be derived simply by combining
subplans. However, in practice, subplans often interact. That is, achieving some goals can actually prevent the accomplishment of

18

The “Naval” Project

An on-going problem for a large multi-national oil corporation was to allocate oil rigs

across a variety of prospects. Because both rigs and prospects are very heterogeneous, co-

ordinating its activities and those of its subsidiaries so that the most appropriate rig was used

at each prospect at the appropriate time could be a significant source of savings. Similarly, to

get this co-ordination wrong could be quite costly. Traditionally, this activity involved a great

deal of negotiation on the part of corporate planners. To a great extent it was an ad hoc

process which evolved continuously as problems in projected assignments were encountered

and addressed. In an attempt to make co-ordination more effective and less costly, the firm

embarked on the Naval project. This was an attempt to develop an expert system that could

generate the most coherent compromise between each of the operations of the multi-

national, given geographical, physical and time constraints.

The system would in principle use two distinct types of knowledge: one that made it

possible to list prospective rigs and drilling prospects, and to rank each rig as a candidate for a

particular prospect;17 and one that made it possible to combine different preferences across a

large number of prospects into a single coherent plan for rig deployment.

The expert system worked in two stages. In the first, the basic elements of rigs (type,

weight of derrick, capacity etc.) and prospects (geology, drilling cost, time constraints etc.)

were described and simply given to the system as data. It then created a list of advantages and

disadvantages of each possible assignment, and used those lists to create a score for each rig-

prospect combination. More was needed, however to generate an optimal plan for rig

assignment since these scores were based on technical issues, and took no account of the

objectives of the different subsidiaries involved. Crucially, these scores made no attempt to

balance any conflicts in these objectives. Underlying the lists of advantages and disadvantages

were constraints, and these were central in the derivation of the assignment scores. But

when looked at from different points of view (e.g. from the points of view of different

subsidiaries, or when considering different strategic objectives of the form) different

constraints had different importance. To bring this into the analysis, the user of the system

had to intervene, giving weights to these constraints. This permitted the system to generate a

“weighted if … then” allocation algorithm.

others.” They were discussing a “simple” production planning problem in which the conflicts were relatively straightforward to
resolve. They were considering none of the complexities involved in the compromises discussed in this section.

17 This issue here is that rigs differ from each other in terms of performance, cost, availability and so on, and prospects differ from
each other in terms of technical characteristics, cost of drilling, geological value and so on.

19

Using this weighted system of potential assignments, the expert system was able to

build an optimal programme. The “compromise algorithm” represented a significant advance

in artificial intelligence, codifying a process formerly done by negotiation within a

committee. In this sense it was creating expertise, (ore perhaps unifying it) out of the

disparate activities of the committee members in negotiation. Unfortunately the system was

limited in several ways. The initial assignment rules had to be simple enough to remain

operational, yet general enough to apply to a broad range of situations. As well, although

formalised rules contained much, and diverse, content, they were all handled in the same

way. Only the weights attributed to them differentiated their importance. But assigning

weights in the first place proved to be a daunting task.

The limits to codification arose because it was impossible to assign objective values a

priori since the weights (and to some extent the parameters themselves) only had meaning

relative to one another, and relative to the shifting goals of the organisations. Furthermore,

there was no system of weights that could adequately (or accurately) account for the tactics

previously used by planners in a rich and dynamic environment. Each specific context

required a modification of the weights to correspond with the most suitable tactic (an issue

that was brought to light when the recommendation of the expert system was compared

with the programmes habitually negotiated for real cases in the past). Nonetheless, Naval

proved useful in generating acceptable programmes once the experts had learned enough about

the system’s reasoning and the effects of different weights. Still, a full-time operator was

necessary to master the several types of expertise involved in running the system. He had to

have a sound knowledge of rigs and prospects, an understanding of the reasoning processes of

the expert system, complete knowledge of general planning and compromise activities in the

industry, and finally he had to understand the over-arching goals of the conglomerate and

the inter-relations among the goals of its subsidiaries. His expertise was not only necessary for

assigning weights and guiding searches, but also for explaining and justifying the results. For

this reason Naval turned out to be “a system for experts rather than an expert system.”

(Hatchuel and Weil, 1995, p. 214).

What we see here is that this assignment activity was too complex to be codified

completely. In essence the system was being asked to make compromises that formerly had

been worked out through an iterative negotiation process. While some parts of this were

encoded, it was only with the help of significant input from an operator who understood

why and how some constraints were more important than others (and that this could

change over time) that the system could be usefully employed. Combining and negotiating

the goals of the different subsidiaries involved, and creating a plan that enabled these goals to

20

be met to the extent possible involved too much iteration between means and ends. Because

the goals as initially stated were incompatible, creating an insoluble problem, they had to be

“re-negotiated” as the assignments were developed.

If the goal was to automate, and duplicate, the rig assignment that had been carried

out by committee previously, the Naval project was a failure. The experts were able to provide

the necessary rules to create sensible single rig-prospect combinations (also introducing

economic rules and preferences concerning contractors or the origin of rigs). However, in

trying to create the compromise programme there was an almost total absence of “expertise”

that could be formulated by the identified experts. No one person had handled the task

before, and thus it was unclear what exactly was being modelled. Eventually it was seen that

this was the negotiation or compromise process itself rather than the skills of any expert.

There seemed to be no systematic way of preparing these programmes since the procedure

had been handled previously by several committees working continuously, intervening when

necessary, trying to reconcile, through negotiations, the most obvious contradictions. In this

case a huge innovation in knowledge modelling would have been necessary, involving not

only modelling the way in which compromise is struck, but also, and especially, the way goals

are adjusted to make compromise possible. The first part, finding a compromise among

different objectives, was achieved (and was no mean feat), but in its entirety this innovation

is simply beyond reach. The key difficulty was in codifying the weighting procedure which

allowed trade-offs to be made among conflicting goals and constraints. The weights having

been assigned, the artificial intelligence experts were able to find algorithms to create

reasonable assignments, but the key step, assigning weights, had to be done manually.

In this enterprise, codification was not an imitation or simulation of expert reasoning,

but a pure innovation in the context of expertise within the firm. Unlike the Totem and

Cornélius projects in which expert know-how was transformed, in the Naval case a method

completely unknown to the experts was incorporated. But while Naval provided the

specialists with added support and legitimacy in their co-ordination tasks, the experts could

not be done away with.

GESPI

The GESPI project (Gestion Prévisionnelle des Itinéraires) was an attempt to

automate the routing of trains through an urban railway station in France. For us it provides

another example of the limits to codifying the strategist’s expertise.

21

In any station, planners create a plan at the start of each day. But in this case there

were 640 possible routes to enter the station, 30 tracks through it, and six tracks serving 30

platforms. This is an enormous combinatorial problem: a train has 1400 possible routes

through the station. But advances in artificial intelligence technology (and the facility of

computers in dealing with combinatorial problems) suggested that an expert system could be

an attractive way of solving this repeated problem.

Any complete expert system would have to cope with three management levels:

crfeating the long term service plan twice a year, defining basic summer and winter services; a

middle term plan making basic track assignments for each day of the week; and real time

traffic control in which plans are sent to the signal cabin for dispatchers’ use in directing

traffic. The third tier of management takes place in real time as it includes on the spot, last

minute evaluations of incidents and adjustments to plans. After looking initially at the

possibility of automating daily routing, the project team decided to restrict their plans to the

middle term assignment of trains and tracks to avoid the technical difficulties of operating in

real time.

In building the GESPI system the engineers discovered that there were far too many

possible combinations of available facilities and constraints in the station to index them, so

the planners broke the problem down into rules of routine and rules for managing

interventions. There were rules to define trains at risk of conflict, and rules defining trains

that were (or were not) assigned regularly to a track. These two types of rules let the planners

work out a programme in stages. Initially the system checked the state of facilities and work

in progress and ensured that all regular traffic was conflict free. It then attempted to assign

platforms and tracks to new or relocated trains (about 250 per day) and ensured a clear route

for each, checking that the assignments conformed to technical, commercial and traffic

constraints. If there were trains it could not schedule, it asked the planner to route them.

The system was built iteratively. When a piece of expertise was recognised, it was

formalised and codified. In this is was much like TOTEM, and each piece of expertise was

translated into a message. This process constituted a stepwise creation of a model of the

information processing and decision-making process. As the model was built, it was tested

against actual decisions and revised, much like building a model in any scientific endeavour.

This process increased the quantity of the experts’ knowledge that was codified (more “rules”

were identified for example) and it improved the principles on which the system was based.

Initial results were encouraging as “the experts expressed their reasoning in a form close to

the heuristics and rules used in artificial intelligence.” (Hatchuel and Weil, 1995. p.181) A

small number of simple rules, codifying the constraints that existed, formed the basis of the

22

system. In the first stage of building the system, technical constraints were addressed, as these

were the simplest and most standardised. At a second stage of modelling, commercial

constraints were included. These were more complex in part because they involved other

departments such as sales and marketing, and thus implicitly involved trade-offs between the

goals of the various departments. Further, they existed in a less formalised and more diffuse

state, (diffuse both in terms of their natures and in that they originated in different parts of

the organization) which made codification more difficult. The language in which the

expertise was expressed was again much like a natural language, but the model of the

planning process became more and more complex as codification proceeded.

As a system, GESPI was able partially to automate the planning task. Users remark,

however, that checking GESPI’s plans is more work than creating them from scratch. One

can conjecture that this is the case because in creating a plan the logic of the plan is

developed, and when a planner knows the general logic of it, it is possible to see whether

different parts fit with the general logic. The difficulty in altering a plan of this nature is the

risk of creating a cascade of secondary changes that must be made to accommodate the first

one. If one understands the logic of the overall plan, certain possible responses can be ruled

out immediately because they will cause these cascades later in the routing. If one does not

understand the logic, one can only proceed by trial and error. When reading a plan created by

GESPI the logic is unknown and has to be deciphered before the internal coherence of the

plan can be evaluated. This is a part of the expertise that is extremely difficult to codify. It is

in a sense the same issue as the evolving means-ends problem of Naval. The evolution of

means and ends is essentially an evolution of the logic of the process. It is in understanding

and manipulating this logic that the expertise lies.18

Again, in this case it was not possible to transfer expert knowledge completely. Even

though there appeared to be a linear approach to the problem of co-ordinating trains in and

out of the station, involving mostly an identifiable goal, fixed constraints, and a limited (if

large) number of possible actions, it was the practical experience of the planners that enabled

them to judge in advance a potentially dangerous situation and intervene if necessary. It was

not possible for the programme to imitate the expertise involved in this kind of decision-

making. Paradoxically, a system designed to be more rapid than human planners was in fact

less flexible when it came to making last minute modifications because it had to reformulate

18 In the Naval case especially, to the extent that the logic of the outcome is discussed in normal circumstances, it would almost
certainly be as ex post rationalisation. After the process has been completed the logic has appeared. Before the process is complete,
the logic of the ends is itself unclear and evolving. To mimic this process then, an expert system would have to be able to change its
internal logic as the process evolves and goals shift.

23

an entire day’s programme, whereas a planner could make these changes just prior to sending

out his plan or at any time throughout the day, as discussed in the previous paragraph.

GESPI used the rules and experience provided initially by the planners to combine the main

artisanal elements with the skills required to find the best possible compromise, but the

programme was unable to imitate their reasoning. Close knowledge of the logic of the

station and the consequent logic of the plan were central to being able make (especially last

minute, ad hoc) adjustments to an existing plan. This logic proved too difficult to model, and

is possibly even inarticulable. Thus again the result of the expert system project was to provide

a system that was of limited use and could only be used be existing experts who were able to

provide the missing logic.19

In both the Naval and GESPI projects, “expertise” was recognised at the corporate

level. One or several highly skilled people were using their skills to perform some important

task. Expertise was involved in what appeared, at first glance, to be a task with a relatively

stable, repeated objective. Automation should have been possible. The cases differ in that in

one, GESPI, the expertise could be located in a single individual (though there were several

who, individually, had it); in the other, Naval, the expertise was constituted at the group level

— it did not reside in a single individual but in the dynamic of the group.

In the GESPI case, several individual experts were identifiable, but a certain aspect of

their expertise remained difficult to harness. They possessed knowledge that was highly

abstract, and possibly inarticulable; knowledge that is only gained through years of experience

in routing trains. Here, planners were developing a plan with some internal logic, and this

logic itself evolved as they worked. But by the end of the process this logic had been

internalized. Was it articulable? This is difficult to answer. Certainly, though, it would have

been extremely difficult, and hence costly to articulate it in such a way that the expert system

could have used it the way the planners themselves did.

In the Naval case two issues complicated matters. First, an “acting expert” could not

readily be identified, hence articulating the expertise was a problem. Indeed, the expertise lay

in the interactions of the negotiators. Second, and much more important, was that the key

part of the expertise expressed in these interactions was the ability to modify means and ends

iteratively, that is, the plan revision resulting from negotiations over the different goals of the

actors. The fact that intermediate goals were revised as the planners worked meant that the

19 One use of the system was to check the effects of possible modifications to the station, presumably because this was not a time-
critical task, and the key question was whether a proposed modification would create impossible problems for train routing.
Using GESPI for this sort of task would not remove a planner from his normal duties.

24

means-ends connections were extremely complicated, and reflexively modified. These

“shifting sands” caused immense problems for codification.

The stumbling block in both cases lay in codifying some highly abstract vision of the

entire operation, and its abstract goals, while the details of the problem solution were

involved with very intermediate, conflicting goals. These intermediate goals changed as the

problems were being solved, but remained connected to the over-arching goal through the

internal logic of the solution. Shifting goals, and the need to develop and understand the

abstract internal logic of the solution made codification very incomplete at best.

In both cases the activity under consideration involved generating plans for actions

which demonstrated compromise between multiple objectives. While at some high, over-

arching level goals were constant (make profits; get the trains through the station safely and

on time) the intermediate goals were very flexible, and, due to the fact that they conflicted

with each other, of necessity fluid. It was this fluidity that caused problems.

Before concluding, we should ask briefly about the issue of joint versus individuated

expertise: Naval versus GESPI. The two cases are different in that regard. GESPI does

represent “organizational expertise” pretty clearly. The simple issue of multiple expertises is

not important: “… a combination of independent expertises is very easy to be accomodated

[sic] in an expert system. Furthermore, modern expert systems can communicate between

them and exchange their knowledge and conclusions.” (Tzafestas and Adrianopoulos, 1993,

p. 28). This is what the designers of GESPI tried to do. The problem was not in combining

their factual knowledge (presumably different members of the team had different knowledge

about rigs and prospects), though, the difficulty lay in the negotiation among different goals.

Each member of the team brought with him or her ideas about the goals of his subsidiary

and about the over-arching goals of the multi-national. These ideas were combined into a

single plan by some inarticulable process. Would designing an expert system have been

possible had the process been carried out by one individual who was able to bring to the task

all of these conflicting goals? Could he have articulated the process by which his decision was

reached? It seems unlikely. The problem lay not in the multiple personnel aspect, it lay in the

compromising aspect.20

20 This is not to say that expertise that lies in a group of persons is necessarily the same as the expertise of an individual. But
drawing out the implications for codification of the differences is not possible using these cases.

25

Conclusions

Codifying knowledge involves three distinct but related aspects: creating models;

creating languages; and creating messages. Each of these aspects has its own costs, and at

each level, as the process occurs, very typically new knowledge is created. The act of codifying

is not merely translating the “expert’s” knowledge out of his head and onto “paper”, but is

typically an act of knowledge creation.21 As we have seen in these studies, different

knowledge activities involve more and less complex codification processes.

Generally speaking, relatively linear, direct processes with a known and fixed goal, like

those pursued by the artisan, can readily be codified into a list of instructions or decision rules

which can be implemented by a machine. Activities that involve significant amounts of

pattern recognition, generalisation and use of analogy are more difficult. Here a deep abstract

knowledge of the system being “repaired” is part of the expertise, and this becomes difficult to

model and thus to codify. Forming strategies, trading different, conflicting goals off against

each other is harder yet. Goals can change as constraints are encountered, so they co-evolve

with actions in the process of addressing whatever problem is to be solved. This involves a

vision of the system at an even higher level of abstraction, and this aspect of expertise is

extremely difficult to codify. Costs of codification obviously increase as we move from the

artisan to the strategist, and these rising costs can contribute to the less complete expert

systems that it seems possible to produce when artisanal or diagnostic expertise is involved.

We should also note that environment matters. When an environment is changing it

means that the expertise in question has to be both broader (in dealing with more situations)

and deeper (to deal with new situations). A “complex” task in a stable environment is likely to

be easier to codify than a “simple” task in a changing environment. Speaking again in terms

of costs, in the stable environment, the fixed costs of creating models and languages will in

general be lower and, further, there is the possibility to spread them over more applications.

This seems to be true for many types of expertise. But when the central part of human

expertise is created through experience (as is the case of the repairer) a stable environment

increases the value of this uncodified knowledge, and it can be this expertise that is difficult

to codify and this decreases the net benefits of codification.

The TOTEM project was implemented and considered a success. We can conclude

from this that benefits outweighed costs. Interestingly, though, economic factors did not

play a large part in the decision-making in the project. We can conjecture that costs were

21 This point is stressed by Hatchuel and Weil.

26

relatively small. Benefits came not in the form of immediate productivity gains, but rather in

the creation of expertise in a form that was possible to use and evolve. Further, the project

created unexpected knowledge (for example an improved definition of ingots) which gave the

firm better control over its production process.

While Cornélius was a technical success, in that it was able to codify expert

knowledge, it was not a success in diffusing it beyond the initial experts whose knowledge

was codified. The project as an expert system for repair has been discontinued, but the

codified knowledge has been put to other, valuable, uses. Codification of the causal structures

of failures enabled the firm to increase the general reliability and productivity of the cell.

The Naval project was discontinued in part because of a major change in the oil

market, and in part because the labour costs of the project were not bearable in the firm’s

new environment. In the new environment, the firm no longer performed task that Naval

was meant to automate. This, of course, makes it difficult to evaluate its (potential) costs and

benefits.

The diagrams produced in the process of creating the GESPI program were similar

to those produced manually. The main result of the system, though, was to confirm the

previous opinion that the station was operating at or above capacity. But the similarity

between the GESPI routing and manual routings implied that the GESPI system could be

used to run experiments on proposed station modifications. One highly peripheral benefit

that was noted was that GESPI provided a beachhead to further office automation. As an

expert system, though, it seems clear that costs outweighed benefits.

 These four case studies illustrate that expert systems can codify knowledge embedded

deeply in skilled humans, and in doing so often create new, sometimes unexpected and

valuable knowledge. The studies also show though that different types of knowledge lend

themselves with different degrees of compliance to the codification process.

27

Bibliography

Arrow, Kenneth J. (1974). The Limits of Organization, Norton.

Badiru, A.B (1992). Expert Systems Applications in Engineering and Manufacturing Englewood Cliffs:
Prentice-Hall.

Callahan, P.H. (1988). “Expert Systems for AT&T Switched Network Maintenance” AT&T Technical
Journal, vol. 67, pp. 93-101, January/February.

Chang, K.-H. and W.G. Wee “A Knowledge-Based Mechanical Assembly Planning System” in Tzafestas
(1993), pp. 291-306.

Chen, J.-G. and K. Ishiko (1993). “EXACT — an Expert System for Automobile Air-Conditioner
Compressor Troubleshooting” in Tzafestas (1993), pp.193-207.

Cowan, Robin. and Dominique Foray (1997) “The Economics of Codification and the Diffusion of
Knowledge”, Industrial and Corporate Change vol. 6(3), pp. 595-622.

Cowan, Robin, Paul David and Dominique Foray, “The Explicit Economics of Knowledge Codification
and Tacitness” Industrial and Corporate Change, 2000.

Dallimonti, R. “Smarter Maintenance with Expert Systems” Plant Engineering, pp. 51-56, June 18, 1987.

David, J-M., J-P Krivine, J-P Tiarri and B. Ricard (1993). “Using Prototypical Knowledge in
Classification-Based Expert Systems” in Tzafestas (1993), pp.209-221.

Dosi, G. and M. Egidi (1991). “Substantive and Procedural Uncertainty,” Journal of Evolutionary Economics,
1(1): pp. 145-168.

Hatchuel, A. and Weil. B. (1995) Experts in Organizations, de Gruyter, New York.

Herrod, Richard A. (1988). “AI: Promises Start to Pay Off”, Manufacturing Engineering, March 1988, pp.
98-103.

Horton, E.M., Hsiao, J. and Sielinski, J.E. (1988). "Interactive Repair Assistant: A Knowledge-Based
System for Providing Advice to Field Technicians" IEEE Communications Magazine, vol. 26,
pp. 56-57, November.

Jindia, A.K. (1990). “Expert Systems Remove Repetitive Tedious Work for Customer Order Entry”
Industrial Engineering, vol. 22(11) Nov. pp. 51-53.

Kaewert, D.W. and J.M Frost (1990) Developing Expert Systems for Manufacturing: A Case Study Approach
New York: McGraw-Hill.

Kokkenaki, A.A., K.P. Valavanis and S.G. Tzafestas, (1993). “A Survey of Expert System Tools and
Engineering-based Expert Systems”, in Tzafestas (1993), pp. 367-378.

Kubicek, H. and Seeger, P. (1992) “The negotiation of data standards: A comparative analysis of EAN and
EFT/POS systems” in M. Dierkes and U. Hoffman eds., New Technology at the Outset: Social
forces in the shaping of technological innovation, Campus Main.

Long, P. O. (1991) “The openness of knowledge: an ideal and its context in 16th-century writings on
mining and metallurgy”, Technology and Culture

Lundvall, B.A. and Johnson, B. (1994) “The Learning Economy”, Journal of Industry Studies, vol.1(2).

28

Pratt, C.A. (1984). “An Artificially Intelligent Locomotive Mechanic” Simulation pp. 40-41.

Putnam, Hilary (1987) The Many Faces of Realism Open Court Press.

Rauch-Hindin, W.B. (1986) Artificial Intelligence in Business, Science and Industry - Fundamentals. Prentice-
Hall, New Jersey

Tzafestas, Spyros (ed.). (1993). Expert Systems in Engineering Applications Berlin: Springer-Verlag, 1993.

Tzafestas, S. and A. Adrianopoulos “Knowledge Acquisition for Expert System Design.” in Tzafestas
1993, pp. 25-51.

MERIT-Infonomics Research Memorandum series
- 2001-

2001-001 The Changing Nature of Pharmaceutical R&D - Opportunities for Asia?

Jörg C. Mahlich and Thomas Roediger-Schluga

2001-002 The Stringency of Environmental Regulation and the 'Porter Hypothesis'

Thomas Roediger-Schluga

2001-003 Tragedy of the Public Knowledge 'Commons'? Global Science, Intellectual

Property and the Digital Technology Boomerang
Paul A. David

2001-004 Digital Technologies, Research Collaborations and the Extension of Protection

for Intellectual Property in Science: Will Building 'Good Fences' Really Make
'Good Neighbors'?

 Paul A. David

2001-005 Expert Systems: Aspects of and Limitations to the Codifiability of Knowledge
 Robin Cowan

2001-006 Monopolistic Competition and Search Unemployment: A Pissarides-Dixit-

Stiglitz model
 Thomas Ziesemer

Papers can be purchased at a cost of NLG 15,- or US$ 9,- per report at the following address:

MERIT – P.O. Box 616 – 6200 MD Maastricht – The Netherlands – Fax : +31-43-3884905
(* Surcharge of NLG 15,- or US$ 9,- for banking costs will be added for order from abroad)

Subscription: the yearly rate for MERIT-Infonomics Research Memoranda is NLG 300 or
US$ 170, or papers can be downloaded from the internet:

http://meritbbs.unimaas.nl
http://www.infonomics.nl
email: secr-merit@merit.unimaas.nl

