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Abstract

Sign-compatible dynamics describe changes in the composition of a population driven by

differences in fitness. A saturated equilibrium is a fixed point for sign-compatible dynamics

where each subgroup with positive population share has highest fitness. An evolutionary

stable equilibrium is a saturated equilibrium attracting all trajectories nearby, such that the

Euclidean distance to it decreases monotonically. We address existence, multiplicity, and

dynamical stability of fixed points of sign-compatible dynamics. A saturated equilibrium may

be approximated by using a variable dimension restart algorithm for solving the nonlinear

complementarity problem.
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1. Introduction

The main equilibrium concepts in evolutionary game theory are the Nash equilibrium (Nash,

1951) and the evolutionary stable strategy (Maynard Smith and Price, 1973). Taylor and

Jonker (1978) introduced the replicator dynamics into game theory. They showed that for a

large class of normal form games, each Nash equilibrium corresponds with a fixed point of

these dynamics, and furthermore that each evolutionary stable strategy corresponds with an

asymptotically stable fixed point. The latter implies that the dynamical system converges to

such an evolutionary stable strategy from all states which are sufficiently nearby. For long,

the replicator dynamics have virtually monopolized evolutionary modelling in game theory.

Only recently, interest in larger classes of dynamics plausible in an evolutionary modelling

framework, has risen. Nachbar (1990) showed for a class of normal form games that if

evolutionary dynamics converge from the interior of the state space to a point, then it

corresponds with a Nash equilibrium. Thus, a surprising motivation of the standard solution

concept in game theory was provided: a Nash equilibrium may develop as a product of

selective pressures, even in (total) absence of rationality on the level of the individual agents.

Similar dynamical processes may be, and in fact are, employed in economics and other

social sciences, where an interpretation of rationality as a result of ’evolutionary’ selection

has considerable appeal. Evolutionary dynamics are also used as a metaphor for various

learning processes (e.g., Zeeman, 1981, Friedman, 1991, Mailath, 1992). Alchian (1950), and

Friedman (1953) use the argument of natural selection informally for the defense of the

hypothesis of profit maximization. Nelson and Winter (1982) incorporate ’evolutionary’

selection arguments in a formal approach to economic change. Further contributions in

economics featuring ’evolutionary’ dynamics include e.g., Winter (1964, 1971), Dow (1986),

Dosi et al. (1988), Nachbar (1991) on Hansen and Samuelson (1988), or Metcalfe (1994).

Hannan and Freeman (1989) employ selection dynamics for populations of organizations

exhibiting structural strategic inertia. Finally, Axelrod and Hamilton (1981), and Axelrod

(1984) have become the standard allegories for the evolution to cooperation in societies

consisting of selfish agents. In mathematical biology, the (bi)linearity of fitness functions as

yielded by normal form games is sometimes abandoned (cf. Hofbauer and Sigmund, 1988),

as this feature is unduely restrictive for instance for settings with positive or negative
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frequency-dependent feedbacks, with asymmetric contests, or with viscous populations

(Myerson et al, 1991). Furthermore, outside the context of mathematical biology, the

replicator dynamics are far less compelling as ’evolutionary’ dynamics.

We therefore study a large class of deterministic population dynamics, meanwhile

allowing very general fitness functions. We strip off as many details as possible from the

various evolutionary approaches. Hence, we are left with the bare essentials of ’evolutionary’

modelling, creating the generality necessary to follow auniform approach in separate fields.

All strategical interactions and other relevant influences, are assumed to be captured by a

continuous fitness function, which depends on the composition of the population. From this

function, the relative fitness function is derived, which attributes for every state to each

subgroup in the population the difference between the subgroup’s fitness and the population

share weighted average fitness of the population. A relative fitness function satisfies

continuity and complementarity, and in deriving the majority of our results, we use no

additional requirements. Our population dynamics are sign-compatible with the relative fitness

function, which implies that the change in population share of any subgroup with positive

population share, corresponds in sign with the relative fitness of this subgroup.

We focus on fixed point concepts of sign-compatible dynamics, most of which may

be found in standard textbooks on dynamical systems (e.g., Hirsch and Smale, 1974). Two

concepts which we regard as particularly relevant for evolutionary modelling, are the saturated

equilibrium (Hofbauer and Sigmund, 1988) and the evolutionary stable equilibrium. A

saturated equilibrium implies ’extinction of the less fit’, since each subgroup with below-

maximum fitness has population share equal to zero at such a state. Furthermore, each

subgroup with positive population share has highest fitness. We prove that existence of at

least one saturated equilibrium for arbitrary relative fitness functions is guaranteed, and each

saturated equilibrium is a fixed point for all sign-compatible dynamics. Furthermore, if any

trajectory under these dynamics converges from the interior of the state space, then its limit

point is a saturated equilibrium. For most practical purposes only the stable fixed points of

a dynamical system are relevant. We show that any stable fixed point of sign-compatible

dynamics is a saturated equilibrium. The evolutionary stable equilibrium is defined in terms

of local properties of the dynamical system. We prove that any trajectory reaching a certain

neighborhood of an evolutionary stable equilibrium, converges monotonically towards it,

which means that the Euclidean distance to this fixed point decreases strictly in time. For
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normal form games, we derive conditions where our notion of evolutionary stability implies

strategic stability, and conversely. Finally, we show that each saturated equilibrium can be

associated with a symmetric Nash equilibrium of a ’derived’ bi-matrix game, and vice versa.

We address the topics of multiplicity, stability and computability of fixed points of

sign-compatible dynamics. An interesting by-product of our analysis is that we were able to

show and consequently mathematical similarities between relative fitness functions and

generalized excess demand functions for pure exchange economies with normalized prices.

We derive conditions for uniqueness of an interior saturated equilibrium, which imply either

asymptotical stability, or dynamic instability of this fixed point. We remark that finding

arbitrary fixed points is a trivial problem, since each vertex of the state space is a fixed

point. However, a vertex need not be saturated, in which case it is dynamically unstable for

all sign-compatible dynamics. As the dynamical system is generally nonlinear, it may display

a high degree of complexity. Hence, researchers interested in finding saturated equilibria or

stable fixed points of sign-compatible dynamics, may encounter computational problems. A

variable dimension restart algorithm to solve the nonlinear complementarity problem, may be

used to find a saturated equilibrium. Such an algorithm may be started in an arbitrary point

of the state space, and it converges to an arbitrarily accurate approximation of a saturated

equilibrium for arbitrary relative fitness functions. Research indicates that the algorithm of

Doup et al. (1987) is very efficient.

The generality of our model allows applications in mathematical biology, economics,

and other social sciences. Throughout this paper we will use a terminology from evolutionary

game theory or mathematical biology. However, in the various contexts states may have

different interpretations, e.g., strategies, population shares, market shares, whereas the

’subgroups’ may be players, agents, firms, organizations, etc. Fitness may require translation

too, e.g., payoffs, revenue, profits, potential to grow. The dynamical process can be selection

dynamics, market dynamics, or a learning process.

We formulate the model in the next section. We compare the saturated equilibrium and

the evolutionary stable equilibrium with standard fixed-point-concepts, and with equilibrium

concepts from game theory. In Section 3, we derive conditions for stability and uniqueness

of fixed points. In Section 4, we give a procedure to find fixed points, which includes a

variable dimension restart algorithm for solving the nonlinear complementarity problem, to

approximate a saturated equilibrium. Section 5 concludes.
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2. The evolutionary model

We consider a population which consists of n+1 distinguishable, (strategically) interacting

subgroups. The population as well as the subgroups are assumed to be very large, or

alternatively the number of interactions is very large. The interaction of the subgroups has

consequences on their respective abilities to reproduce, and ’fitness’ may be seen as a

measure of ability to reproduce. The fitness of a subgroup is determined by its genetically

given behavior in combination with the composition of the population. Since behavior is

assumed to be predetermined, fitness can be treated as depending solely on the composition

of the population. Let p be a nonnegative integer, let Ip+1 = {1,...,p+1}, let x = (x1,...,xn+1)
T ∈

Sn = {y ∈ n+1 ∑j yj = 1, yi ≥ 0 for all i ∈ In+1}, denote a vector of population shares,

henceforth to be called a state. The population share of subgroup i∈ In+1 at state x is

therefore xi. Let E:Sn→ n+1 be a continuous (multi)function, attributing to every subgroup its

fitness at each state. We will refer to the function E as the fitness function. All stategical

interaction, as well as all possible other influences on the fitnesses of the subgroups, are

assumed to be fully captured by this function.

Time-notations are suppressed whenever confusion is unlikely. Let p be a positive

integer, x,y∈ n+1, then the p-normis x p = ( i xi
p)1/p, the lengthof x is x 2, the inner

product is xTy = Σi xiyi, and the Euclidean distancebetween x and y is d2(x,y) = x−y 2.

Furthermore, ej, j ∈ In+1, is the vertex x∈ Sn with xj = 1. For z∈ n+1, we write for example,

z ≥ 0, meaning zi ≥ 0 for all i ∈ In+1. The convex hullof {x 1,...,xk} ⊂ n+1, is conv{xj j ∈

Ik} = {y ∈ n+1 y = j λj xj, where j λj = 1, andλj ≥ 0 for all j ∈ Ik}. The boundaryof Sn,

bd Sn, is defined by bd Sn = {x ∈ Sn xi = 0 for some i∈ In+1}. The interior of Sn, int Sn, is

defined by int Sn = Sn\(bd Sn). We denote the cardinality of a set S by S . Let K⊂ In+1, then

the set Sn(K), defined by Sn(K) = {x ∈ Sn xj = 0 if j ∈ K}, is called a k-faceof Sn, where

k = In+1\K . A k-face Sn(K) is called a facetof Sn if k = n.

The relative fitness functionf:Sn→ n+1 is given by

fi(x) = Ei(x) ∑j xj Ej(x) for all i ∈ In+1, x ∈ Sn. (1)

A (multi)function, say h:Z→D with Z,D subsets of the same finite-dimensional Euclidean
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space, satisfies complementarityif xTh(x) = 0 for all x ∈ Z. From Eq. (1) it may be derived

that every relative fitness function satisfies complementarity. Unless specificly mentioned

otherwise, we treat relative fitness functionsas if characterized by continuity and

complementarity.

To model the evolution of the composition of the population, we consider a dynamic

process represented by the following system of n+1 autonomous differential equations:

dx/dt = G(x) for all x ∈ Sn, (2)

where dx/dt = (dx1/dt,...,dxn+1/dt)T = (G1(x),...,Gn+1(x))T, denotes the continuous-time changes

of the population shares of all subgroups. We require that the function G fulfills the following

criterium, namely sign-compatibility. Let f:Sn→ n+1 be a relative fitness function, then the

function G:Sn→ n+1, is sign-compatible1 if

(a) G is (Lipschitz) continuous,

(b) Σi Gi(x) = 0 for all x ∈ Sn,

(c) xi = 0 implies Gi(x) = 0 for all x ∈ Sn, i ∈ In+1, and

(d) xi > 0 implies sign Gi(x) = sign fi(x) for all x ∈ Sn, i ∈ In+1.

For y ∈ , sign y is defined as: sign y = +1 if y > 0, sign y = 0 if y = 0, and sign y = −1 if

y < 0. Population dynamics are sign-compatible if the function G in (2) is sign-compatible.

Note that the replicator dynamics are sign-compatible. Sign-compatibility is considerably

weaker than Friedman’s (1991) order compatibility combined with admissibility, but

somewhat stronger than weak compatibility combined with admissibility.

A trajectoryunder G, denoted by {x(t)}t≥0, is a sequence of points being a solution to

x(0) = x0 for some x0 ∈ Sn, and for all t’ ≥ 0: dx(τ)/dτ = G(x(τ)) for all τ ∈ [0,t’]. For sign-

compatible population dynamics, the change in population share of each nonextinct subgroup

corresponds in sign with its relative fitness. Property (a) can be used in the strong version,

i.e., Lipschitz continuity, or the weaker one. Existence of a solution is guaranteed by

continuity, whereas Lipschitz continuity additionally guarantees uniqueness. An even stronger

1 An anonymous referee suggested this nomenclature.
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property, which implies Lipschitz continuity for a compact state space, is that the function G

has continuous partial derivatives at each state. Property (c) may be viewed as strong, but as

we usually assume that all subgroups are present in the population, the implications of this

requirement will in effect not be unduely restrictive.

The state y∈ Sn is a fixed pointif G(y) = 0 in Equation (2). At a fixed point changes

in the composition of the population come to a rest. The state y∈ n+1, is a limit point if

there exists at least one trajectory {x(t)}t≥0 ⊂ Sn, such that G(x(0))≠ 0 and Limt→∞ x(t) = y.

Continuity of sign-compatible dynamics and the compactness of Sn, imply that G(y) =0 and

y ∈ Sn. The fixed point y∈ Sn is stableif for any open neighborhood U⊂ Sn of y, an open

neighborhood V of y exists such that any trajectory starting in V remains in U. A fixed point

is unstableif it is not stable. The stable fixed point y∈ Sn is asymptotically stableif y is a

limit point of all trajectories starting in V\{y}. Hirsch and Smale (1974) treat several methods

to examine the dynamical stability of fixed points. We use Lyapunov’s second method on

several occasions, which can be extended to examine sets of fixed points.

The state y∈ Sn is a saturated equilibriumif f(y) ≤ 0 (Hofbauer and Sigmund, 1988).

A saturated equilibrium y is strictif f j(y) = 0 for precisely one j∈ In+1. At a saturated

equilibrium each group with positive population share has highest fitness. Any group with

below-average-fitness has population share equal to zero. The following four propositions and

two corollaries pertain toarbitrary relative fitness functions andarbitrary sign-compatible

dynamics. All proofs may be found in the Appendix.

Proposition 2.1. There exists at least one saturated equilibrium.

Proposition 2.2. Every saturated equilibrium is a fixed point.

Each unstable interior fixed point is a saturated equilibrium, hence not every saturated

equilibrium is stable. The following shows further connections.

Proposition 2.3. Every strict saturated equilibrium is a vertex, moreover it is an

asymptotically stable fixed point.

Proposition 2.4. Every stable fixed point is a saturated equilibrium.
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The latter proposition implies that any fixed point that is not a saturated equilibrium is

dynamically unstable. Furthermore, the proof of Proposition 2.4 leads to the following.

Corollary 2.1. No fixed point in bd Sn that isnot a saturated equilibrium, is reached by any

trajectory for sign-compatible dynamics from the relative interior of Sn.

Suppose y∈ Sn is a limit point for some trajectory {x(t)}t≥0, with x(0) = x0 ∈ int Sn. Then

obviously either y∈ int Sn, or y ∈ bd Sn. Corollary 2.1 applies to the latter case, and all

interior fixed points of sign-compatible dynamics are saturated equilibria. Finally, a trajectory

starting in an interior fixed point, never leaves this state. This proves the ensuing corollary.

Corollary 2.2. Any trajectory under sign-compatible dynamics starting in the relative interior

of the state space, converges only to a saturated equilibrium.

e e
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3

y
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<
<

>

>

<

Figure 1. The saturated equilibrium y is stable, it is not a limit point; vertices e1, e2, e3 are unstable limit points.

We will expand on the connections and discrepancies of this corollary and a result in Nachbar

(1990) in Propositions 2.6 and 2.7. A limit point need not be a stable fixed point, nor need

it be that a stable fixed point is a limit point in general, see e.g. Figure 1. Figure 1 also

illustrates that not every trajectory has a limit point.

The fixed point y∈ Sn, is an evolutionary stable equilibriumif and only if there exists
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an open neighborhood U⊂ Sn of y satisfying

yTG(x) > xTG(x) for all x ∈ U\{y}. (3)

Let a relative fitness function be arbitrary, let sign-compatible dynamics be given, and let

ESE, ASFP, SSAT denote the sets of all evolutionary stable equilibria, asymptotically stable

fixed points, and strict saturated equilibria respectively. Then the connections between these

sets are the following.

Proposition 2.5. SSAT⊆ ESE⊆ ASFP.

An evolutionary stable equilibrium need not be a vertex of Sn, hence SSAT≠ ESE in general.

By definition each asymptotically stable fixed point is stable, as well as a limit point. In part

(a) of the proof of Proposition 2.5, we use the strict Lyapunov function V, which is defined

by V(x) = − ½ (d2(x,y))2 where y is the evolutionary stable equilibrium. Hence, the following.

Corollary 2.3. The Euclidean distance to an evolutionary stable equilibrium decreases

monotonically in time along any trajectory starting sufficiently close to it.

The property of the dynamics formulated in Eq. (3), leading to Corollary 2.3, is sufficient for

asymptotical stability, but it is not a necessary condition. It may happen that a trajectory

which starts near an asymptotically stable fixed point, moves quite far away from the fixed

point before converging. Hence, evolutionary stability is a more stringent requirement than

asymptotical stability, and therefore ESE≠ ASFP. Weissing (1990) makes a similar

distinction with respect to asymptotical and evolutionary stability in evolutionary games. An

alternative (geometrical) interpretation of Eq. (3) is that the angle between the vectors (y−x)

and G(x) is always sharp in U\{y}. For normal form games, evolutionary stability of an

interior Nash equilibrium additionally implies asymptotical stability for the entire interior of

the state space under the replicator dynamics. The latter aspect may carry over to models with

bilinear relative fitness functions. It need however not carry over to a model with an arbitrary

relative fitness function, and hence there may exist several interior evolutionary stable

equilibria.
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In contrast to the saturated equilibrium, none of its ’refinements’ need to exist in

general. Figure 1 illustrates the case where neither a limit point for any trajectory in the

interior of the unit simplex, nor an asymptotically stable fixed point exist. Hence, by

Proposition 2.5 neither evolutionary stable equilibria, nor strict saturated equilibria exist.

Figure 2 illustrates the case where no limit point for any interior trajectory, and therefore no

asymptotically stable fixed point, exists.
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Figure 2. Adapted from Varian (1978), Scarf (1960). Arrowheads indicate directions of the dynamics. All

interior trajectories converge to the dotted cycle. The saturated equilibrium y is unstable.

We turn briefly to normal form evolutionary games. Assume that the relative fitness

function is given by (Bomze and Van Damme, 1992)

fk(x) = (sk)T A ( j xjs
j) − ( j xjs

j)T A ( j xjs
j) for all x ∈ Sn, k ∈ In+1, (4)

where A is an (m+1)×(m+1)-matrix, and sk ∈ Sm is the fixed inheritable strategy of subgroup

k ∈ In+1. The population strategy is the population share weighted average strategy,j xj sj.

Under the standard assumption that each individual is matched with another individual with

a probability that is exactly equal to the population share of the subgroup to which the latter

individual belongs, it is as if the former individual plays against the population strategy. This

results in a fitness of subgroup k∈In+1 of (sk)T A ( j xj sj), hence the population share
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weighted average fitness of the population is equal toj xj ((sj)T A ( j xj sj)) = ( j xjs
j)T A ( j

xjs
j) for all x ∈ Sn, k ∈ In+1. This motivates (4).

For the symmetric bimatrix game (B,BT), where B is an (n+1)×(n+1)-matrix, the mixed

strategy combination (y,y), y∈ Sn, is a symmetric Nash-equilibriumif x T B y ≤ yT B y for

all x ∈ Sn. Furthermore, the mixed strategy combination (y,y), y∈ Sn, is an evolutionary

stable strategyif x ∈ Sn implies xT B y ≤ yT B y, and additionally if x∈ Sm\{y} and xT B y

= yT B y, then xT B x < yT B x. The following proposition establishes the connections

between the saturated equilibria of Equation (4), and the Nash-equilibria of a ’derived’

bimatrix game.

Proposition 2.6. Let A be an (m+1)×(m+1) matrix, let C = [s1,s2,...,sn+1] an (m+1)×(n+1)-

matrix, with sk ∈ Sm for all k ∈ In+1. Then, the following two statements are equivalent:

i) y is a saturated equilibrium of the relative fitness function given by (4),

ii) (y,y) is a Nash equilibrium of the symmetric bimatrix game (CTAC,CTATC).

In the traditional models in evolutionary game theory, it usually holds that m = n, and sj =

ej for all j ∈ In+1. In that case CTAC = A, and any saturated equilibrium y corresponds with

a symmetric Nash equilibrium of (A,AT), and vice versa. The following shows the connections

and, perhaps more importantly, discrepancies between strategic equilibria for (A,AT) and for

(CTAC,CTATC) in general.

Proposition 2.7.Let A be an (m+1)×(m+1) matrix, let C = [s1,s2,...,sn+1] an (m+1)×(n+1)-

matrix, with sk ∈ Sm for all k ∈ In+1. Then,

i) if (sk,sk) is a Nash equilibrium of the bimatrix game (A,AT), then (ek,ek) is a Nash

equilibrium of the bimatrix game (CTAC,CTATC), not conversely,

ii) if (sk,sk) is an evolutionary stable strategy of the bimatrix game (A,AT) and

sk ∉ conv{sj j ≠ k}, then (ek,ek) is an evolutionary stable strategy of the

symmetric bimatrix game (CTAC,CTATC), not conversely.

Propositions 2.6 and 2.7 clearly imply that the result of Nachbar (1990) regarding limit points

of interior trajectories under ’evolutionary’ dynamics being Nash equilibria, cannot effortlessly

be generalized to evolutionary games where mixed strategies are inherited.
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In Van Damme (1991), an evolutionary stable strategy of a symmetric bimatrix game

(A,AT) is characterized as follows. The strategy y∈ Sn is an evolutionary stable strategy, if

and only if for a relative fitness function given by (4), with m = n and C = [e1,e2,...,en+1], there

exists a(n open) neighborhood U⊆ Sn of y such that

yT A x > xT A x for all x ∈ U\{y}. (5)

Since Eq. (4) reduces to fk(x) = (ek)
T A x − xT A x for all k ∈ In+1, and x∈ Sn, Eq. (5) can

be written alternatively as

yTf(x) > 0 for all x ∈ U\{y}. (5’)

Note the similarity of Equations (3) and (5’), where the functions f and G are perfectly

interchangeable, since by complementarity xTf(x) = 0 for all x ∈ Sn. We will focus now on

the question whether (5’) implies dynamical stability or not.

If (5’) holds in an open neighborhood U⊆ Sn of a saturated equilibrium y for an

arbitrary relative fitness function f, then it follows easily that no saturated equilibrium exists

in U\{y}. We call such a state a generalized evolutionary stable state. For a population

consisting of two subgroups, the asymptotically stable fixed points, the evolutionary stable

equilibria and generalized evolutionary stable states concur for arbitrary sign-compatible

dynamics. This leads to the following, where GESS denotes the set of all generalized

evolutionary stable states.

Corollary 2.4. For n = 1, ESE =ASFP = GESS.

The following may be quite useful in higher dimensions, i.e., if there exist more than two

subgroups. For a saturated equilibrium y, let Hy:S
n→ n+1, be given by

Hy(x) = (y − x)T(G(x) − f(x)).

Proposition 2.8. If for a saturated equilibrium y there exists an open neighborhood U⊆ Sn,

such that Hy(x) < (>) 0 for all x ∈ U\{y}, then ’y is an evolutionary stable equilibrium’
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implies ’y is a generalized evolutionary stable state’ (’y is a generalized evolutionary stable

state’ implies ’y is an evolutionary stable equilibrium’).

Obviously, each evolutionary stable strategy of the bimatrix game (A,AT) is a generalized

evolutionary stable state for the relative fitness function given by (4), withm = n and C =

[e1,e2,...,en+1], and vice versa. However, the results of Taylor and Jonker (1978), Zeeman

(1981), namely that evolutionary stability implies asymptotical stability for the replicator

dynamics, need not hold for arbitrary sign-compatible dynamics. If (y − x)TG(x) < 0 < yTf(x)

for all x ≠ y in an open neighborhood U of y, then y is a dynamically unstable generalized

evolutionary state. By the converse argument, it follows that an evolutionary stable

equilibrium need not be a generalized evolutionary stable state for n > 1.

3. On the number of fixed points and their stability

First, we show (mathematical) analogies between certain concepts developed in this paper,

and in general equilibrium theory. We proceed by applying several well-known results in

general equilibrium theory to our evolutionary model. Letn+1
+ = {x ∈ n+1\{ 0} x i ≥ 0 for

all i ∈ In+1} denote the set of all prices of n+1 economic goods, where x∈ n+1
+ is an (n+1)-

vector of prices, and xj denotes the price of good j∈ In+1. An excess demand functionis a

continuous function f: n+1
+ → n+1 satisfying:

(i) Walras’ law, i.e., xTf(x) = 0 for all x ∈ n+1
+, and

(ii) (Positive) Homogeneneity of degree zero in x∈ n+1
+, i.e. for allα > 0 it holds

that f(αx) = α0f(x), and

(iii) (Weak) Desirability of all goods, i.e. fi(x) ≥ 0, whenever xi = 0.

Strong desirability is formalized by fi(x) > 0, whenever xi = 0. If Property (iii) is dropped,

then the function f is called a generalized excess demand function. Sonnenschein (1972,

1973), Mantel (1974), and Debreu (1974) have shown that any continuous function satisfying

complementarity can be approximated arbitrarily closely by an aggregate excess demand
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function derived from a pure exchange economy with utility maximizing agents.

Homogeneity of degree zero of the (generalized) excess demand functions allows

restricting analysis to normalizations of the price space, Pp = {x ∈ n+1
+ x p = 1} with p

∈ , where Property (ii) becomes void. Note that these sets are compact, whereasn+1
+ is

neither closed, nor bounded. A relative fitness function is mathematically equivalent to a

generalized excess demand function for an economy with prices normalized to Sn.

A Walrasian equilibriumis characterized by a price vector y∈ n+1
+ which satisfies

f(y) ≤ 0, where f is a generalized excess demand function. At a Walrasian equilibrium, there

exists no good of which the aggregate demand exceeds the aggregate supply. The saturated

equilibrium and the Walrasian equilibrium for a pure exchange economy with prices

normalized to Sn, are mathematical parallels. The standard price adjustment process in

economic literature is the Walrasian tâtonnement process, formalized as a set of differential

equations by Samuelson (1947). For more general tâtonnement processes which we will

describe below, we refer to Uzawa (1961). Let x∈ n+1
+ be an (n+1)-vector of prices, and let

f: n+1
+→ n+1 be a generalized excess demand function, then a tâtonnement processis defined

by

dx/dt = F(x) for all x ∈ n+1
+,

where F: n+1
+ → n+1 satisfies: Fi(x) = 0 if xi = 0 and fi(x) < 0, and sign Fi(x) = sign fi(x)

otherwise. The tâtonnement process proposed by Samuelson (1947) is given by:

0 if xi = 0 and fi(x) < 0,
dxi/dt = fi(x) otherwise.

Hence, the change in price of each good with a positive price, corresponds in sign with its

excess demand, moreover the change is proportional to its excess demand. An interesting case

is the ’weak axiom of revealed preferences’-case, where for a Walrasian equilibrium y,

Equation (5’) holds for all positive price vectors x with length equal to y. Then, each

trajectory under Samuelson’s process starting from such a price vector, converges to y2.

Sign-compatible population dynamics are mathematically equivalent to a subclass of

2 The proof is well established, cf. Varian (1978) where a slightly more general proposition is proven.
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the tâtonnement processes on the unit simplex. The additional requirements for this subclass

with respect to the function F are continuity,i Fi(x) = 0 for all x ∈ Sn, and Fi(x) = 0,

whenever xi = 0. An example of such a tâtonnement process on Sn is:

dxi/dt = xifi(x) for all i ∈ In+1.

Under this process, the change in the price for each good corresponds in sign with, and is

proportional to, thevalue of its excess demand. The reader familiar with evolutionary

dynamics, will quickly recognize the similarity of this process to the replicator dynamics.

At least one saturated equilibrium exists for arbitrary relative fitness functions, and the

vertices of the unit simplex are fixed points of sign-compatible dynamics. Generically, each

of the 2n+1 − 2 faces of the unit simplex contains a fixed point of sign-compatible dynamics.

It is even not difficult to construct several essentially different examples where there exists

a continuum of saturated equilibria. If the set of saturated equilibria contains more than one

element, then not each saturated equilibrium can be asymptotically stable. Conversely

however, uniqueness of a saturated equilibrium is not sufficient even for stability.

If the condition of the following proposition is fulfilled, then there exists a facet or

there exist certain facets of the unit simplex which do not contain a saturated equilibrium.

Proposition 3.1. If k ∈ K ⊆ In+1 implies fk(x) > 0 whenever xk = 0, thenδ > 0 exists, such

that for all trajectories {x(t)}t≥0 : Lim inf xk(t) ≥ δ provided xk(0) > 0, for all k ∈ K.
t→∞

This proposition implies that each subgroup in K will ’survive’, even if the system is

subjected to a small incidental shock. For K≥ 2, none of the vertices of the unit simplex

is a saturated equilibrium. If the condition of Proposition 3.1 holds for K = In+1, this is

sufficient for permanenceof the system (cf. Hofbauer and Sigmund, 1988). Permanence

implies that all saturated equilibria are in the interior of the state space, and that all subgroups

’survive’ in the long run, moreover their population share is bounded from below byδ.

Permanence corresponds with strong desirability of all goods in a pure exchange economy.

A setting where slightly more precise statements can be made about the number of

fixed points of sign-compatible dynamics, is the situation where all saturated equilibria are

regular, meaning that the determinant of the Jacobian matrix of the relative fitness function
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at such a point, exists and is nonzero. It follows from Debreu (1970) that if all saturated

equilibria are regular, then each is locally unique, and their number is finite since the state

space is compact. Moreover, there exists an odd number of equilibria (cf. Dierker, 1972,

Hofbauer and Sigmund, 1988).

Another setting is the following. We call a system strongly cooperative(competitive)3

if for a differentiable relative fitness function f,

∂fi(x)/∂xj > (<) 0 for all i ≠ j and all x ∈ int Sn. (6)

Arrow et al. (1959) consider the case that all goods in an economy are strong gross

substitutes. The conditions for strong cooperativeness and gross substitutability are

mathematically equivalent. The following lemma from Arrowet al. (1959), is used in the

proof of the ensuing proposition.

Lemma 3.1. If all commodities are strong gross substitutes, the excess demand function

satisfies homogeneity of degree zero, and there exists a positive equilibrium price vector, then

this price vector is uniquely (up to a scalar multiple) determined.

Proposition 3.2. For a strongly cooperative system, if there exists an interior saturated

equilibrium, then it is the unique interior saturated equilibrium.

For a strongly competitive evolutionary system with relative fitness function f, the system

with relative fitness function −f is strongly cooperative. Proposition 3.2 shows that if an

interior saturated equilibrium y exists for the system with relative fitness function −f, then y

is the unique interior saturated equilibrium. Hence, y is the unique interior saturated

equilibrium for f.

The following lemma is a straightforward application of a theorem of Uzawa (1961).

It links the conditions for uniqueness of a saturated equilibrium with conditions for

asymptotical stability.

3 Hofbauer and Sigmund (1988) use the terms cooperative and competitive for slightly different evolutionary
systems. However, for the replicator dynamics, sgn∂Gi(x)/∂xj = sgn∂fi(x)/∂xj for all interior states.
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Lemma 3.2. If, for a strongly cooperative system, there exists an interior saturated

equilibrium, then each trajectory of sign-compatible dynamics from the interior of Sn,

converges to it.

By a (similar) converse argument as above, it follows that if a system is strongly competitive,

the interior saturated equilibrium is dynamically unstable. Uniqueness of interior saturated

equilibria need not hold, if strong cooperativeness (competitiveness) is weakened to∂fi(x)/∂xj

≥ (≤) 0 for all i ≠ j and for all x ∈ Sn in (6). However, all trajectories for sign-compatible

dynamics starting in the interior of Sn converge to some fixed point (cf. Uzawa, 1961).

Evolutionary modelling Pure exchange economies with prices normalized
to the unit simplex

Relative fitness function Excess demand function
Complementarity of the relative Walras’ Law
fitness function
Saturated equilibrium Walrasian equilibrium
Sign-compatible population dynamics tâtonnement processes
Permanence Desirability of all goods
Strongly cooperative system Gross substitutability of all goods
(Generalized) evolutionary stable state Weak axiom of revealed preferences

Table I. Mathematical similarities shown.

If a strongly cooperative system is permanent, then Proposition 3.1 implies that every

saturated equilibrium lies in int Sn, whereas Proposition 3.2 implies that there exists only one

equilibrium in int Sn. By Lemma 3.2 this point is asymptotically stable, hence SAT =

ASFP = 1, where SAT denotes the set of all saturated equilibria. If for a relative fitness

function f, the evolutionary system under −f is permanent, then the n+1 vertices of the n-

dimensional unit simplex are strict saturated equilibria. Hence, in that case ESE≥ SSAT

= n+1. If, the system is additionally strongly competitive, then by Proposition 3.2 and Lemma

3.2 exactly one interior saturated equilibrium exists, which is dynamically unstable. Therefore

SAT > ASE ≥ SSAT = n+1.
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4. Finding fixed points of sign-compatible dynamics

Finding an arbitrary fixed point of sign-compatible dynamics is a trivial problem, since the

n+1 vertices of the n-dimensional unit simplex are fixed points for all sign-compatible

dynamics. It was shown in Section 2 that each strict saturated equilibrium is a vertex of the

state space, and that such a strict saturated equilibrium is an evolutionary stable equilibrium.

It need however not be that any vertex of the state space is saturated, in which case a check

of the vertices can only yield dynamically unstable fixed points. For predictive purposes the

unstable fixed points are of little relevance, since the slightest disturbance of the dynamical

system may move the system away from such a fixed point. Though we did not specificly

model such disturbances, two observations are in order. In real-world dynamical systems

disturbances may be caused by environmental influences. Secondly, it is worth keeping in

mind that the deterministic differential equations of Eq. (2), are approximations of very

complicated stochastic processes, see e.g. Gilboa and Matsui (1992), Boylan (1992) on the

topic. However, some residual stochastic noise in the dynamical system may not be

unrealistic.

Finding y ∈ Sn for which z(y) ≤ 0 for a continuous function z:Sn→ n+1 satisfying

complementarity, is called a nonlinear complementarity problem with respect to z. Many

methods have been suggested to solve the nonlinear complementarity problem, which may

provide solutions to find saturated equilibria forsomerelative fitness functions, e.g., Smale

(1976). Smale’s Global Newton method is extremely efficient when started near certain

Walrasian equilibria. It need however not converge to a Walrasian equilibrium when started

in an arbitrary state (cf. Keenan, 1981). We are interested in methods which solve the

nonlinear complementarity problem with respect to arbitrary relative fitness functions. The

results of Saari and Simon (1978) and Saari (1985) imply that for this purpose, one should

rely on scarf-type methods (Scarf 1973, Kuhn 1968,1969). For alternative computational

methods we refer to e.g., Eaves (1972), Todd (1976) and improvements. For an overview on

the nonlinear complementarity problem, related problems, algorithms and applications, see the

excellent survey of Harker and Pang (1990).

One class of efficient simplicial algorithms originated with Van der Laan and Talman

(1979). This so-called variable dimension restart algorithm was designed to solve the problem
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of finding a Walrasian equilibrium for a pure exchange economy where the excess demand

function fulfills strong desirability. Van der Laanet al. (1987) formulated an algorithm to

solve the more general nonlinear complementarity problem on the product space of a finite

number of unit simplices. For a survey on variable dimension restart algorithms, we refer to

Van der Laan and Talman (1987). In the following, we describe the algorithm of Doupet al.

(1987) as an illustration. To simplify the exposure below considerably and remaining within

the context of our model, we will limit ourselves to the case where the state space is the unit

simplex, and the arbitrary starting point of the algorithm lies in its relative interior.

Let z:Sn→ n+1 satisfy continuity and complementarity. Let in the sequel, v∈ int Sn

denote the arbitrary starting pointof the algorithm. The algorithm subdivides the unit simplex

into subsets of variable dimension for sign vectorss in n+1 with components sj ∈ {−1,0,+1},

depending on v. For a sign vector s, let

I−(s) = {i ∈ In+1 si = −1},

I0(s) = {i ∈ In+1 si = 0},

I+(s) = {i ∈ In+1 si = +1}.

We assume from now on that at least one component of every sign vector is equal to +1 and

at least one is equal to −1. Each sign vector s induces a t-dimensional subset of Sn with t =

I0(s) +1, as follows.

Definition 4.1 Let s be a sign vector with I+(s) , I−(s) > 0, let t = I0(s) +1, and let v

∈ int Sn. Then the t-dimensional subset A(s) of Sn, is given by

A(s) = {x ∈ Sn xi = avi if i ∈ I+(s),

xi = bvi if i ∈ I−(s),

xi ∈ [bvi,avi] if i ∈ I0(s), with 0≤ b ≤ 1 ≤ a}.

See Figure 3 for an illustration. The boundary of a t-dimensional set A(s) with t > 1, consists

of the (t−1)-dimensional sets A(s’) with s’j ≠ 0 for precisely one j∈ I0(s) and s’i = si for all

i ≠ j, and the intersection of A(s) with boundary face Sn(I−(s)).

Next, each subset A(s) of Sn is triangulated, i.e., subdivided into t-dimensional

simplices, t = I0(s) +1. For a t-simplexσ with vertices y1,...,yt+1, a k-face, k ≤ t − 1, is the

convex hull of k + 1 vertices ofσ. A k-face ofσ is called a facetof σ if k = t−1. Firstly, the

union of all simplices with dimension t = n, isequal to Sn. Furthermore, for each pair of t-
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dimensional simplices, 1≤ t ≤ n, the intersection is either empty or a common face of both,

which in itself is (t−k)-dimensional, 1≤ k ≤ t. We refer to Figure 4 for an illustration.

A((+1,−1,−1) ) A((−1,+1,−1) )

A((−1,−1,+1) )T

T

T

T

A((−1,+1,+1) )

A((+1,+1,−1) )

A((+1,−1,+1) )
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T

A((−1,0,+1) )

A((−1,+1,0) )

A((0,−1,+1) )

T

T

T

A((+1,0,−1) )

A((+1,−1,0) )

A((0,+1,−1) )T
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v

e e

e

1 2

3

Figure 3. The subdivision of Sn, n = 2, into sets A(s) of dimension t = I0(s) +1, 1≤ t ≤ n+1.

Definition 4.2 A t-simplexσ(y1,...,yt+1), 1 ≤ t ≤ n, is s-completeif the system of n+2 linear

equations

t+1 z(yi) eh 0
λi 1 − µh sh 0 = 1 ,

i=1 h∉I0(s)

has a nonnegative solutionλ* i, i = 1,...,t+1, and µ*h, h ∉ I0(s).

We assume that for each solution of the system of Definition 4.2,at most oneof the variables

λi*’s and µh*’s is equal to zero. Under thisnondegeneracy assumption, each s-complete t-

simplex has a line segment of solutions (λ*,µ*), since the system of Definition 4.2 has n+2

linear equations and n+3 variables. An endpoint of such a line segment is called a basic

solution, and due to this nondegeneracy assumption, at a basic solution exactly one of the

variables (λ*,µ*) is equal to zero.

Definition 4.3 Let σ(y1,...,yt+1) be a t-simplex, 1≤ t ≤ n, let x∈ σ(y1,...,yt+1). Let λ1,...,λt+1 be

the unique weights satisfying x =i λi yi, λi ≥ 0 for all i ∈ It+1, and i λi = 1. Then the
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piecewise linear approximation Z of z at x, is given by Z(x) = i λi z(yi).

v

e e

e

1 2

3

Figure 4. The simplicial subdivision of Sn for n = 2, and of each subset A(s) for m = 2. Each t-dimensional set

A(s) of Sn, 1 ≤ t ≤ n+1, is subdivided into mt t-dimensional simplices.

The line segment of solutions (λ*,µ*) of the linear system of Definition 4.2, induces a line

segment of points x = i λ* i yi in the s-complete simplexσ. Each line segment of points has

two end points, and each end point corresponds with exactly one of the basic solutions. For

each point x of this line segment of points inσ, it holds that sign Z(x) = sign(i λ* i z(yi)) =

s. The latter may be confirmed by checking the linear system of Definition 4.2. This line

segment of such points, or alternatively the line segment of solutions of the linear system of

Definition 4.2, can be followed by making a linear programming pivot step with one of the

variables which are zero at an end point. At an end point x*, it holds eitherλ* i = 0 for some

i ∈ It+1 which implies x* lies in the facet ofσ(y1,...,yt+1) opposite vertex yi, or µ*h = 0 for

some h∉ I0(s) which implies Zh(x*) = 0.

Now we are ready to describe the algorithm with the concepts just defined. If we

happen to have z(v) = 0, then we are finished. Otherwise, assume that at the starting point

v, I0(z(v)) = 0. If not, we may either take an alternative starting point nearby, or slightly

disturb z at v, such that z(v) does not contain any components equal to zero. Let in that case,

s0 = sign z(v) and letσ0(y1,y2), where y1 = v, be the unique one-simplex in A(s0) with v as

a vertex. It is readily confirmed thatσ0(y1,y2) is s0-complete withλ* 2 = 0 at y1 = v which is
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one of its basic solutions, and sign Z(y1) = s0. The algorithm starts with this basic solution

by making a linear programming pivot step with (zT(y2),1)T in the system of linear equations

of Definition 4.2, and the unique line segment of solutions inσ0(y1,y2) is followed to the other

basic solution.

In general, if at a basic solution µ*h = 0 for some h∈ I0(s), then the corresponding

point x’ is an approximate zero of z if sh = +1 and I+(s) = 1 or if sh = −1 and I−(s) =

1. In the first case Z(x’)≤ 0 and in the latter case Z(x’)≥ 0. The algorithm terminates with

x’ as an approximate solution. Otherwise,σ = σ(y1,...,yt+1) is also s’-complete and a facet of

just one s’-complete (t+1)-simplexσ’ in A(s’) with s’ h = 0 ≠ sh and s’k = sk for all k ≠ h.

Then the algorithm continues by making a linear programming pivot step with (zT(y),1)T

where y is the vertex of the (t+1)-simplexσ’ opposite the facetσ of σ’.

On the other hand, if, by making an l.p. pivot step in the system of Definition 4.2 with

respect toσ, λ* j becomes zero for some j∈ It+1, then the facetτ of σ opposite the vertex yj

is also s-complete. If the (t−1)-simplexτ lies in the boundary bd A(s) of A(s), then eitherτ

lies in the boundary face Sn(I−(s)) of Sn, or τ lies in a (t−1)-subset A(s’) with s’i ≠ 0 for

precisely one i∈ I0(s) and s’k = sk for all k ≠ i. In the first case, at the point x’ corresponding

to the basic solution, x’j = 0 for all j with Zj(x’) < 0, which implies that x’ is an approximate

solution. In the other case,τ is the s’-complete (t−1)-simplexσ’ in A(s’) and the algorithm

continues by making an l.p. pivot step in the system of Definition 4.2 with (sie
T

i,0)T. Finally,

if the s-complete facetτ of σ does not lie in bd A(s), then the algorithm continues by making

an l.p. pivot step in the system of Definition 4.2 with (zT(y),1)T, where y is the vertex of the

unique t-simplex adjacent toσ sharing the facetτ with it.

Thus, the algorithm generates a unique sequence of adjacent simplices of varying

dimension starting at v. Under the nondegeneracy assumption, no simplex can be generated

more than once. Since the number of simplices of the underlying triangulation is finite, the

algorithm must terminate within a finite number of steps. Moreover, it terminates with an

approximate solution point x’ for which either Z(x’)≤ 0, or Zj(x’) ≥ 0 for all j with x’ j > 0.

If z(x’) at the approximate solution x’ does not satisfy a predetermined accuracy criterium,

then algorithm can be restarted in x’ with a finer triangulation. Thus, a more accurate

approximation of a saturated equilibrium is generally found, and this restarting procedure can

be repeated until the approximate solution does satisfy this accuracy criterium.

For computational results, we refer to Doup (1988). The efficiency of the procedure
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can be enhanced greatly by combining the algorithm of Doupet al. (1987) with the Global

Newton method (Smale, 1976). At an approximating solution Smale’s method may be applied,

which near a saturated equilibrium either converges rapidly to a much more accurate

approximation of the equilibrium, or diverges. If the latter happens, or if the last found

approximation is insufficiently accurate, the variable dimension restart algorithm may be

restarted with a finer simplicial subdivision of the state space.
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Figure 5. The algorithm follows the heavy curve leading from v to the saturated equilibrium p. One-dimensional
sets for sign vectors containing no zeroes, are indicated by broken straight lines. C((+1,−1,−1)T) refers to a set
where (sign f1(x),sign f2(x),sign f3(x))T = (+1,−1,−1)T; f1 denotes a curve where f1(x) = 0.

Simulation in order to find equilibria may be quite unpractical. Weissing (1990) shows

that for continuous dynamics converging to an interior fixed point, the discrete analogue may

spiral outward. Furthermorecycling, i.e., a sequence of points is repeated infinitely, may

occur, and detecting cycling requires a vast memory, since it may take many iterations before

a sequence of points repeats itself. Additionally, simulated dynamics may cycle, while the real

dynamics do not. For games where continuous dynamics admitstable limit cyclesonly for

populations with at least four subgroups, Weissing (1990) shows existence of stable limit

cycles for three subgroups for discrete dynamics. For higher-dimensional settings the problems

increase in general, and existence ofstrange attractors, even chaos must be anticipated, and

it is unknown what the behavior of the discrete dynamics in the presence of strange attractors,
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is in general. Therefore, although the fixed points of continuous and discrete dynamics concur,

the qualitative behaviors of the dynamics may differ, globally or even arbitrarily near a fixed

point. Hence, conclusions about (non)convergence of continuous dynamics should not be

based on (non)convergence of simulated dynamics, which are discrete approximations of the

continuous dynamics by conception.

5. Conclusions

We have investigated a very general evolutionary model, while allowing arbitrary continuous

fitness functions. We introduced the relative fitness function, which attributes for every state

to each subgroup in a population its fitness relative to the average fitness. Such a relative

fitness function satisfies complementarity by definition and continuity. We specified a large

class of evolutionary population dynamics, called sign-compatible dynamics, under which the

change in the population share of each nonextinct subgroup corresponds in sign with the

relative fitness of this subgroup. Hence, due to selective pressures the population share of

each subgroup which has a fitness which is higher (lower) than the average fitness of the

population, increases (decreases).

We examined the saturated equilibrium, showed that the set of saturated equilibria is

nonempty for arbitrary relative fitness functions, and that each saturated equilibrium is a fixed

point for sign-compatible dynamics. Furthermore, we proved that each stable fixed point is

a saturated equilibrium and each trajectory under sign-compatible dynamics from the interior

of the state space converges only to a saturated equilibrium. At a saturated equilibrium, each

subgroup with positive population share has highest fitness. We introduced the evolutionary

stable equilibrium, and the dynamical system has attractive properties in a neighborhood of

it. Every trajectory reaching a certain neighborhood of an evolutionary stable equilibrium

converges towards it, while the Euclidean distance to the equilibrium strictly decreases

monotonically. The dynamic properties of the saturated equilibrium and the evolutionary

stable equilibrium suggest that these concepts are adequate dynamic generalizations of the

well-known Nash equilibrium and evolutionary stable strategy used in evolutionary game

theory.

23



An interesting and perhaps surprising by-product of our analysis is that we were able

to expose mathematical similarities between relative fitness functions and excess demand

functions for pure exchange economies with normalized prices. Both types of functions satisfy

continuity and complementarity. Furthermore, a saturated equilibrium corresponds with an

economic equilibrium, whereas sign-compatible dynamics for a given relative fitness function

correspond with a Walrasian tâtonnement process for an excess demand function (see also

Table I). As is widely recognized in economics, we should anticipateany dynamic process

on the unit simplex as the outcome of sign-compatible dynamics combined withsomerelative

fitness function. Multiple saturated equilibria may exist even in ’simple’ cases, and sign-

compatible dynamics, may possess stable limit cycles. Even more complex dynamics and

attractors must be expected, e.g., tori, and even chaos (e.g., Nowak and Sigmund, 1993).

The generality of our model opens opportunities for evolutionary modelling in various

directions. However, the price for the increased generality, is that finding fixed points with

certain stability requirements may be quite hard. We propose a two-step method to find

saturated equilibria. First all vertices of the unit simplex are examined since each strict

saturated equilibrium is necessarily a vertex of the state space, and we have shown that any

strict saturated equilibrium is an evolutionary stable equilibrium. To find a saturated

equilibrium, a variable dimension restart algorithm for solving the nonlinear complementarity

problem, may provide solace. Each such algorithm is globally convergent, which means that

it converges to an arbitrarily accurate approximation of a saturated equilibrium within a finite

number of steps for arbitrary relative fitness functions while being started from an arbitrary

starting point. Research indicates that the algorithm of Doupet al. (1987) is the most efficient

variable dimension restart algorithm for the nonlinear complementarity problem. To the best

of our knowledge no globally convergent process exists which convergesexclusivelyto stable

or asymptotically stable fixed points of the type of dynamics studied in this paper. Suppose

namely that such a globally convergent algorithm were to exist, then it would not terminate

at all in the case that the model does not possess a stable equilibrium. This would contradict

our assumption that the algorithm is globally convergent. Having approximated a saturated

equilibrium, further stability analysis may be undertaken.

24



APPENDIX

Proof 2.1 Let F be the point-to-set mapping from Sn to the subsets of Sn, for every x∈ Sn

defined by F(x) = conv({ej fj(x) = maxi fi(x), i ∈ In+1}). Then F is upper-
semicontinuous, and for every x∈ Sn the set F(x) is nonempty, convex and compact.
From Kakutani (1941), it follows that there exists y∈ Sn, satisfying y∈ F(y).
Let c = maxi fi(y) and let T = {k fk(y) = c}. Since yj = 0 for all j ∉ T, we obtain:
0 = yTf(y) = Σj∈T yj fj(y) + Σj∉T yj fj(y) = Σj∈T yj fj(y) = c.

Proof 2.2 Let y ∈ Sn satisfy f(y) ≤ 0. Then it follows by complementarity that for every
j ∈ In+1 precisely either yj > 0 and fj(y) = 0, or yj = 0 and fj(y) ≤ 0.
Both imply G(y) = 0 for sign-compatible dynamics.

Proof 2.3 Let y ∈ Sn be a strict saturated equilibrium. Let j, j∈ In+1, satisfy 0 = fj(y).
Then 0 =Σi yi fi(y) ≤ Σi≠j yi maxi≠j f i(y) = (1−yj) maxi≠j f i(y) ≤ 0. Hence, yj = 1.
Since f is continuous, an∈ > 0 and aδ > 0 exist, satisfying fi(x) < −∈ for all i ≠ j and
all x ∈ U = {u ∈ Sn 1 − uj < δ}. By complementarity fj(x) = − Σi≠j xi fi(x)/xj >
(1 − xj)∈ > 0 for all x ∈ U\{y}. Furthermore, G(y) =0 by Proposition 2.2, whereas
x ∈ U\{y} implies sign Gi(x) ≤ 0 for all i ≠ j, (7)

sign Gj(x) > 0. (8)
Let V:U→ be defined by V(x) = (xj − 1) − Σi≠j xi for all x ∈ U.
Clearly, V(y) = 0 and dV(y)/dt = 0, whereas for all x∈ U\{y}: V(x) < 0, and
∂V(x)/∂xj = 1 and∂V(x)/∂xi = −1, i ≠ j, dV(x)/dt = Σk ∂V(x)/∂xk Gk(x) =
Gj(x) − Σi≠j Gi(x) > 0 by (7) and(8).
Hence, V is a strict Lyapunov-function on U, and y is asymptotically stable.

Proof 2.4 Suppose y is a stable equilibrium and y is not a saturated equilibrium.
Then fj(y) > 0 and yj = 0 for some j∈ In+1. Since f is continuous,∈ > 0 andδ > 0
exist such that fj(x) > ∈ for all x ∈ U = {u ∈ Sn maxi ui−yi < δ, i ∈ In+1}.
Let {z(t)} t≥0 be a trajectory with z(0)∈ U and let zj(0) = α > 0. Since zj(0) = α and
fj(z(0)) > ∈, it follows that sign Gj(z(0)) = +1, implying Gj(z(0)) > 0. Furthermore,
zj(t) > zj(0) and Gj(z(t)) > 0 {z(t)} t≥0 ⊂ U. Then {zj(t)} t≥0 increases monotonically while
{z(t)} t≥0 ⊂ U. Hence, there exists t* > 0 such that maxi zi(t*)−y i = δ, i ∈ In+1, thus
z(t*) ∉ U. This contradicts stability of y.

Proof 2.5 a) ESE⊆ ASE. Let y be an evolutionary stable equilibrium and let U⊂ Sn be the
open neighborhood of y where (3) holds. Let V:Sn→ be given by V(x) =
− ½ Σi (yi − xi)

2, then V(y) = 0 and dV(y)/dt = 0, for all x∈ U\{y}: V(x ) < 0 and
dV(x)/dt = Σi ∂V(x)/∂xi dxi/dt = Σi (yi − xi) Gi(x) = yTG(x) − xTG(x) > 0. This means
that V is a strict Lyapunov-function on U, hence y is asymptotically stable.
b) SNTE⊆ ESE. Let y = ej, j ∈ In+1 be a strict saturated equilibrium, then from the
proof of Proposition 2.3, it follows that there exists a neighborhood U such that (7)
and (8) hold in U\{y}. Then, x∈ U\{y} implies (y j − xj) Gj(x) > 0, as well as
(yi − xi) Gi(x) ≥ 0 for all i ≠ j. Hence, (y − x)TG(x) > 0 for all x ∈ U\{y}.

Proof 2.6 Note that (4) can be rewritten as:
fk(x) = (ek)

T(CTAC)x − xT(CTAC)x for all x ∈ Sn, k ∈In+1. (4’)
Let y be a saturated equilibrium for the relative fitness function f given by (4) or (4’).
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Then yj > 0 implies fj(y) = 0 = maxi fi(y), hence ej
T(CTAC)y = maxi ei

T(CTAC)y.
Furthermore, ek

T(CTAC)y < maxi ei
T(CTAC)y implies yk = 0, which in turn implies

(y,y) is a Nash equilibrium of the bimatrix game (CTAC,CTATC).
Conversely, let (y,y) be a Nash equilibrium of the bimatrix game (CTAC,CTATC).
Then, yj > 0 implies ej

T A y = maxi ei
T(CTAC)y. Let T = {j ∈ In+1 ej

TCTACy =
maxi ei

T(CTAC)y}, then yT(CTAC)y = Σj yj ej
T A y = Σj∈T yj(maxi ei

T(CTAC)y) =
maxi ei

T(CTAC)y. This immediately implies f(y)≤ 0.

Proof 2.7 Let (sk,sk) be a Nash equilibrium in (A,AT), then (ei)
T(CTAC)ek = (si)TAsk ≤

skAsk = (ek)
T(CTAC)ek for all i ∈ In+1. Hence, by symmetry (ek,ek) is a Nash

equilibrium of (CTAC,CTATC).
Let (sk,sk) be an evolutionary stable strategy in (A,AT), we will show that a
neighborhood U⊂ Sn exists such that (ek)

T(CTAC)x > xT(CTAC)x for all x ∈ U\{ek}.
Let x = (1 − λ)ek + λ( j≠k µj ej) with λ ≠ 0, and let s = j≠k µj sj. Then,
(ek)

T(CTAC)x = (1 − λ)(sk)T A sk + λ(sk)TAs, and xT(CTAC)x =
(1 − λ)2(sk)TAsk + (1 − λ)λsT A sk + (1 − λ)λ(sk)TAs + λ2sT A s. Hence,
(ek)

T(CTAC)x − xT(CTAC)x = λ((1 − λ)((sk)T A sk − sT A sk)) + λ((sk)T A s − sT A s))).
Next, we use that (sk,sk) is an evolutionary stable strategy.
If (sk)T A sk > sT A sk for all s ∈ Sm, then takingλ sufficiently close to zero yields
(1 − λ)((sk)T A sk − sT A sk) + λ((sk)T A s − sT A s) > 0.
If (sk)T A sk = sT A sk for some s∈ Sm, then (sk)T A s − sT A s) > 0 since sk ≠

j≠k µj sj, hence (1 −λ)((sk)T A sk − sT A sk) + λ((sk)T A s − sT A s) =
λ((sk)T A s − sT A s) > 0.
Therefore, (ek,ek) is an evolutionary stable strategy in (CTAC,CTATC).
The ’not conversely’ statements in the proposition follow from this example.

0 1
Let A = 1 0 , and let s1 = (1/3,2/3)T, s2 = (1/6,5/6)T, then

10/18 7/18
CT A C = 7/18 5/18 .
It follows easily that (e1,e1) is an evolutionary stable strategy in (CTAC,CTATC), but
(s1,s1) is not a Nash equilibrium in (A,AT).

Proof 2.8 Let y be a saturated equilibrium, and let U⊆ Sn be a neighborhood of y, such that
Hy(x) > 0 for all x ∈ U\{y}. Then Hy(x) = (y − x)T(G(x) − f(x)) > 0, therefore
(y − x)TG(x) > (y − x)Tf(x) = yTf(x). Hence, (5) implies (3). Reverting all inequalities,
yields the converse implication.

Proof 3.1 Let K ⊆ In+1, satisfing fk(x) > 0, whenever xk = 0 for all k ∈ K.
Let S(K) = {x ∈ Sn xk = 0, for some k∈ K}. Since f is continuous, there exists
δk > 0 for each k∈ K, such that xk < δk implies fk(x) > 0. Now, take
0 < δ < min {δk k ∈ K}, U = {u ∈ Sn uk ≤ δ for all k ∈ K}, and let V:U→ n+1

be given by V(x) = mink∈K xk for all x ∈ U. Clearly, V(x) = 0 for all x ∈ S(K),
V(x) > 0 for all x ∈ U\S(K). Furthermore dV(x)/dt =Σj ∂V(x)/∂xj dxj/dt = Gi* (x),
where i* ∈ K is some index satisfying xi* = mink∈K xk. Therefore, if x∈ S(K), then
Gi* (x) = 0, and if x∈ U\S(K), then Gi* (x) > 0.
Hence dV(x)/dt = 0 for all x ∈ S(K), whereas dV(x)/dt > 0 for all x ∈ U\S(K),
implying that V is a strict Lyapunov-function on U. For each trajectory {z(t)}t≥0 with
z(0) ∈ U\S(K), {V(z(t))} t≥0 increases strictly while {z(t)}t≥0 ⊂ U\S(K). Therefore,

26



t* ≥ 0 exists, satisfying V(z(t*)) =δ, hence the trajectory leaves U.

Proof 3.2 Let f be a relative fitness function, differentiable at all x∈ Sn. Let ∂fi(x)/∂xk > 0
for all k ≠ i, x > 0. Let y ∈ Sn satisfy y >0 and f(y) = 0.
Define F: n+1

+ → n+1, for every p∈ n+1
+ by F(p) = f(x(p)), where x(p)≡ p/ p 1.

For p ∈ n+1, p > 0, F is continuous, pTF(p) = ( p 1)x(p)Tf(x(p)) = 0, and F is
positively homogeneous of degree zero. F is differentiable, moreover∂Fi(p)/∂pk =
( p 1)

−1 ∂fi(x(p))/∂xk(p) > 0. By Lemma 3.1, it follows that
(a) there exists q∈ n+1, q > 0, satisfying F(q) =0, and
(b) if F(p) = 0 for some p >0, then p =λ q for someλ > 0.

Let q > 0 and F(q) =0. Then x(q)∈ Sn, and F(q) = F(x(q)) = 0. Then x(q) = y.
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