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Abstract: Traditional coastal flood risk prediction often overlooks critical geographic features, under-
scoring the need for accurate risk prediction in coastal cities to ensure resilience. This study enhances
the prediction of coastal flood occurrence by utilizing the Geospatial Artificial Intelligence (GeoAI)
approach. This approach employed models—random forest (RF), k-nearest neighbor (kNN), and
artificial neural networks (ANN)—and compared them to the IPCC risk framework. This study
used El Salvador as a demonstration case. The models incorporated seven input variables: extreme
sea level, coastline proximity, elevation, slope, mangrove distance, population, and settlement type.
With a recall score of 0.67 and precision of 0.86, the RF model outperformed the other models and
the IPCC approach, which could avoid imbalanced datasets and standard scaler issues. The RF
model improved the reliability of flood risk assessments by reducing false negatives. Based on the RF
model output, scenario analysis predicted a significant increase in flood occurrences by 2100, mainly
under RCP8.5 with SSP5. The study also highlights that the continuous mangrove along the coastline
will reduce coastal flood occurrences. The GeoAI approach results suggest its potential for coastal
flood risk management, emphasizing the need to integrate natural defenses, such as mangroves, for
coastal resilience.

Keywords: coastal flood risk; GeoAI; random forest; IPCC risk approach; mangroves; disaster risk
management; coastal resilience

1. Introduction

Coastal zones worldwide are increasingly vulnerable to climate-related hazards, with
coastal floods emerging as one of the most pressing threats [1]. Coastal flooding refers
to seawater penetrating land caused by unpredictable high-water occurrences, such as
regular high tides or storm surges resulting from tropical cyclones, storms, or typhoons,
lasting at least one day in coastal regions [2]. Climate change is expected to increase the
frequency of coastal flooding due to rising sea levels, enhanced storm surges, and changes
in precipitation patterns. This danger poses substantial hazards to human populations,
infrastructure, and ecosystems in these coastal zones [3,4]. Consequently, comprehending
coastal flooding and its related effects is essential.

Previous studies have utilized coastal flood risks to ascertain the potential extent of
inundated areas and the anticipated exposed populations or assets [5–7]. Coastal flood risk
is the probability of coastal flood occurrence in specific regions, driven by physical and
social factors, including hydrometeorological, geophysical, and socio-economic variables.
At the same time, the aggregate of detrimental consequences, income loss, and property
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damage induced by coastal floods is termed the impact [8]. Prior research employed
coastal flood risk prediction to assess flooding likelihood and impact in coastal areas by
integrating the abovementioned factors [2,7]. Generally, coastal flood risks are predicted
using a statistical approach. This examines flood drivers’ correlations and similarities,
utilizing historical data and statistical models to identify patterns and relationships, such
as regression, probability, or machine learning (ML) models [7,9–11].

Coastal zones are subject to severe coastal flood risk, necessitating the development of
more accurate and reliable flood risk prediction methods due to the limitations of current
approaches [12,13]. The current approaches in coastal flood prediction often use univariate
probability distributions that fail to account for the complex interactions between multiple
flood drivers [12,13]. Another significant limitation is the underutilization of geographic
features, i.e., proximity, shape, or density. Future coastal risk prediction should elaborate
on the proximity of mangrove ecosystems, which function as natural defenses [14–16].
Mangroves have been demonstrated to dissipate wave energy and stabilize shorelines;
however, their role is often overlooked in conventional flood risk prediction [17,18]. This
omission is particularly critical given the growing recognition of mangroves as ecosystem-
based disaster risk reduction (Eco-DRR) strategies, which emphasize integrating natural
ecosystems into disaster risk management.

Recent advances in geospatial technologies and artificial intelligence (AI) have offered
promising avenues for addressing these gaps. The geospatial artificial intelligence (GeoAI)
approach utilizes ML models to elucidate location-based analytics, with a particular focus
on the application of spatial (geographic feature) information [19–21]. This technique
integrates geospatial science with AI techniques, either ML or deep learning (DL), to
analyze and interpret spatial data. GeoAI enables the development of more robust and
precise flood risk assessments by handling large and multi-dimensional data [19,20]. By
incorporating a more comprehensive range of features, including natural defenses and
additional geographical features, GeoAI is anticipated to enhance the robustness of coastal
flood risk prediction [19].

This study aims to advance coastal flood risk prediction by employing GeoAI ap-
proaches, specifically utilizing random forest (RF), k-nearest neighbor (kNN), and artificial
neural network (ANN) models, which are among the most commonly used models [22,23].
This study compares these models with the conventional Intergovernmental Panel on Cli-
mate Change (IPCC) risk assessment concept to demonstrate GeoAI’s potential in reliably
predicting coastal flood occurrences. The framework was applied to coastal hazard-prone
areas, focusing on low- to lower-middle-income countries (LLMIC) and utilizing El Sal-
vador as a case study for demonstration purposes. Seven key forcing variables—extreme
sea level (ESL), coastline proximity, elevation, slope, mangrove distance, population, and
settlement type—were incorporated into the GeoAI models to predict coastal flood occur-
rences as the target variable.

The significance of this study lies in its potential to address the disparity between
conventional risk assessments and the necessity for more comprehensive, data-driven
methodologies that incorporate geographical features and mangroves as natural barriers
into predictive models. By elucidating the role of mangroves and other geographic ele-
ments in mitigating flood risks, this research contributes to the growing body of literature
advocating for Eco-DRR strategies. These findings are anticipated to inform more effective
risk management practices, ultimately enhancing the resilience of coastal communities to
climate change.

2. Materials and Methods
2.1. Development of Coastal Flood Pathways and Key Variables

The study developed and identified coastal flood pathways, and the key variables
used to feed the GeoAI model input in predicting coastal flood occurrences as a target. This
process was achieved through (i) a literature review and (ii) a structured data collection
process. First, a comprehensive review of the existing literature was conducted to analyze
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and identify the variables used in previous coastal flood risk studies. The review covered
publications from all years available in the Web of Science and ScienceDirect databases,
focusing on articles featuring case studies in coastal flood risk assessments. The search
keyword was “coastal flood risk variables”. This review specifically targeted the identifi-
cation of different variables used in coastal flood risk assessment and the documentation
of data sources and formats used. The outcome of this review yielded a list of key forcing
variables, which subsequently guided the data collection and risk simulation processes.

The subsequent step involved a data collection process that entailed archiving geophys-
ical, socioeconomic, hydrometeorological, and other relevant datasets that were recently
available, accessible, and freely usable for academic purposes. These global datasets, docu-
mented extensively in prior research [24], were critical for building the simulation model.
We paid particular attention to the spatial and temporal resolution of the data sources
to ensure their adequate capture of relevant features and the variability of key variables
over time. The GeoAI approach integrates and analyzes extensive datasets from various
sources by leveraging big data to generate robust and reliable coastal flood pathways and
key variables.

Based on the literature review and extensive data collection, this study identified
seven key variables and pathways contributing to coastal flood risk adopted from previous
studies [25–32]. These variables encompass ESL, coastline proximity, elevation, slope,
mangrove distance, population, and settlement types, as shown in the Supplementary
Material Table S1. Coastal flood occurrence is defined as the penetration of seawater onto
land due to storm tides and surges that persist for a duration of one day. ESL represents
areas anticipated to be inundated by ESL. Coastline proximity refers to the accumulated
distance for each grid within the study boundary to the coastline, calculated using Euclidean
distance. Elevation is the topographic height above sea level, while slope indicates the
percent change in elevation over a specific distance for each grid. Mangrove distance
measures the accumulated distance from each grid within the boundary to mangrove
areas, estimated via Euclidean distance. Population represents the number of individuals
per grid, and settlement types categorize the nature of settlements based on population
density. These variables were utilized to inform the GeoAI model in predicting coastal flood
occurrences as the target variable. A detailed description, sources, and data specifications
are provided in Table 1.

It should be noted that wave variables were omitted from this study. The interaction
between waves and tides can modulate nearshore wave heights, increasing the risk of
flooding during high water levels [33,34]. Wave overtopping, driven by stochastic wave
behavior, can lead to significant coastal flooding [35,36]. However, the randomness of
waves introduces uncertainties in flood projections, especially on short time scales [35,36].
Additionally, given the study’s focus on geomorphological and land-based flood drivers,
the decision was made to exclude wave variables from the coastal flood risk prediction
in this study. Therefore, considering the limitations inherent in current coastal flood risk
prediction methodologies, future research efforts should prioritize incorporating wave
action, particularly infragravity waves. Infragravity waves, which are long-period waves
generated by the interaction of shorter wind waves with the ocean floor and coastal
topography, can significantly influence coastal hydrodynamics and sediment transport
processes, even in shallow mangrove areas [37,38]. Additionally, Vousdoukas et al. (2016)
highlighted that excluding wave contributions in Total Water Level (TWL) estimations
could result in approximately a 60% underestimation of flooded areas [39]. Their inclusion
in flood risk assessments could enhance the accuracy and reliability of predictions regarding
coastal inundation and erosion [37].
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Table 1. Description and profile of the key variables.

Key Variable Raw Data
Format

Original
Horizontal
Resolution

Temporal
Resolution Raw Data and URL Sources Variable Profile

Coastal flood
occurrence GeoTIFF 250 m 2000–2018

Ref. [40], Global Flood Database,
https://global-flood-database.
cloudtostreet.ai (accessed on

10 December 2021)

1: flood
0: no flood

Extreme Sea
Level (ESL) Point NA 1980–2100

Ref. [39], European Commission,
http://data.europa.eu/89h/jrc-

liscoast-10012 (accessed on
9 August 2021)

meter ESL

Coastline
proximity Line NA 2000

Author, based on Prototype Global
Shoreline Data,

https://shoreline.chs.coast.noaa.
gov/data/datasheets/pgs.html
(accessed on 17 September 2021)

Index

Elevation GeoTIFF 90 m 2020

Ref. [41], CoastalDEM Database,
https://go.climatecentral.org/

coastaldem (accessed on
17 September 2021)

m asl

Slope GeoTIFF 90 m 2020

Ref. [41], CoastalDEM Database,
https://go.climatecentral.org/

coastaldem (accessed on
17 September 2021)

%

Mangrove
distance GeoTIFF 30 m 2021

Ref. [42], Global Distribution of
Mangroves USGS,

https:
//data.unep-wcmc.org/datasets/4

(accessed on 8 June 2021)

Index

Population GeoTIFF 1 km 2010–2100

Ref. [43], Socioeconomic Data and
Applications Center (SEDAC),

https:
//doi.org/10.7927/q7z9-9r69
(accessed on 15 February 2022)

people

Settlement
types GeoTIFF 90 m 2020

Ref. [44], Urban-Rural Catchment
Areas (URCAs),

https://doi.org/10.1073/pnas.20
11990118 (accessed on

25 October 2021)

1 to 10 types

2.2. Development and Evaluation of Coastal Flood Risk Model Utilizing GeoAI Approach

The GeoAI model was developed to predict coastal flood risk occurrences utilizing key
variables outlined in Section 2.1. The model was used to predict coastal flood occurrence
in three main periods: baseline within 2000–2020 and projections for 2050 and 2100. The
coastal flood occurrence in binary format for 2000–2018 served as the target variable
(Y), while the key variables functioned as features or independent variables (X). The
key variables outlined in Section 2.1 included ESL, coastline proximity, elevation, slope,
mangrove distance, population, and settlement types. The coastal flood risk model was
constructed in three key stages, as depicted in Figure 1: (a) Data Preparation, (b) Risk
Simulation, and (c) Risk Projection. A detailed description of the demonstration case is
provided in Section 2.2.1. Selection of Case Study.

https://global-flood-database.cloudtostreet.ai
https://global-flood-database.cloudtostreet.ai
http://data.europa.eu/89h/jrc-liscoast-10012
http://data.europa.eu/89h/jrc-liscoast-10012
https://shoreline.chs.coast.noaa.gov/data/datasheets/pgs.html
https://shoreline.chs.coast.noaa.gov/data/datasheets/pgs.html
https://go.climatecentral.org/coastaldem
https://go.climatecentral.org/coastaldem
https://go.climatecentral.org/coastaldem
https://go.climatecentral.org/coastaldem
https://data.unep-wcmc.org/datasets/4
https://data.unep-wcmc.org/datasets/4
https://doi.org/10.7927/q7z9-9r69
https://doi.org/10.7927/q7z9-9r69
https://doi.org/10.1073/pnas.2011990118
https://doi.org/10.1073/pnas.2011990118
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2.2.1. Selection of Case Study

The GeoAI model was demonstrated to predict coastal flood occurrences using El
Salvador as a case study. Coastal floods in El Salvador are a significant concern due to their
location and various natural hazards such as tsunamis, flash floods, and sea swell events.
According to historical data, between 2000 and 2018, El Salvador experienced significant
coastal flood incidents, resulting in the inundation of over 28 km2, affecting approximately
3415 people and impacting settlements over 0.57 km2 [40]. Prediction uncertainty increases
with basin size in El Salvador’s coastal flood basins, highlighting the need for accurate
parameter estimation [45].

Moreover, a previous study documented an unprecedented sea swell event in 2015
that substantially impacted the coastline of El Salvador. This occurrence resulted in severe
coastal flooding and alterations to the shoreline. The highest levels of erosion and accretion
were recorded at 268 m in El Salvador [46]. Analysis of satellite data indicated that El
Salvador experienced the most extensive erosion and inundation among several Latin
American urban areas examined [46].

Additionally, El Salvador’s coastal wetlands, represented by mangrove forests, serve
as the primary barrier against flooding and tsunamis, mitigating erosion and coastal
floods [47]. The mangrove areas in El Salvador encompassed approximately 38,443 ha in
2011, which represented a 0.32% decrease compared to the areas in 1998 [47]. In terms of
ecosystem services, a recent study indicated that losses in ecosystem services provided by
mangroves accounted for 9% of the decline in El Salvador, underscoring the severity of
further losses [47]. This loss diminishes the mangroves’ function as natural barriers against
coastal floods.

Given these factors, El Salvador represents an optimal case study for evaluating the
GeoAI model’s efficacy in predicting coastal flood risks. The country’s substantial his-
tory of coastal flood events was well-documented, with openly available data extensively
provided by the Dartmouth Flood Observatory (DFO). These events were also mapped
spatially in the Global Flood Observatory, offering valuable resources for flood risk analysis.
Additionally, flood’s dependence on mangrove ecosystems for natural flood mitigation
provides a comprehensive context for assessing the model’s utility. El Salvador’s vulner-
ability, attributable to frequent extreme weather events, exacerbated by socioeconomic
challenges and limited resources for conventional flood, underscores the necessity of in-
novative predictive tools such as GeoAI. Focusing on El Salvador, this study addresses
local flood prediction requirements and elucidates the broader applicability of the GeoAI
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approach for other similarly vulnerable coastal regions where mangrove conservation is
crucial as Eco-DRR.

2.2.2. Data Preparation

The coastal flood risk model utilized the key variables identified in Section 2.1 and
illustrated in Figure 1. The data were selected and prepared to capture the primary
drivers and modifiers of flood risk. The data for simulation were confined to the research
boundary, specifically the Low Elevation Coastal Zone (LECZ), which is considered prone
to coastal flooding [4]. It covered all areas with an elevation below 10 m above sea level and
hydrologically connected to the coast. The data were prepared using ArcGIS Pro 2.8. Due
to the varying spatial resolutions of the datasets, a resampling technique was implemented
to harmonize the datasets to a 30 m resolution.

The resampling functions, e.g., nearest neighbor and bilinear, were utilized to han-
dling the data. According to previous study, the optimal resampling method for preserving
sharpness and pixel break in high-resolution satellite images is contingent upon the image
processing operation, spatial resolution, and evaluation parameters [48]. Previous research
has demonstrated that when images are resampled to high spatial resolution, the object
statistical features and classification accuracy are minimally affected by object boundary
uncertainty; consequently, both raster and vector object boundary transfers are viable ap-
proaches [49]. In light of this consideration, we subsequently utilized the nearest neighbor
and bilinear methods for resampling our datasets.

The bilinear technique performs a bilinear interpolation and determines the new value
of a cell based on a weighted distance average of the four nearest input cell centers. It is
suitable for continuous data and results in some smoothing of the data. Yet, we considered
the limitation that bilinear interpolation resampling technique had a relative error of 7.2% in
streamflow simulations [50]. For example, in hydrological modeling, bilinear interpolation
was used to resample elevation, despite it is affecting the accuracy of river network extrac-
tion and streamflow simulations [50]. Bilinear interpolation tends to produce more accurate
results when resampling continuous data, as it considers the values of surrounding pixels to
create a weighted average [51]. The nearest neighbor is a resampling technique that involve
selecting the nearest pixel value to estimate new pixel values. This method is suitable used
for categorical or ordinal datasets [52]. However, nearest neighbor interpolation can lead to
noticeable artifacts such as blockiness and blurriness, which degrade image quality [53].
We acknowledged this limitation and suggested advances method. For instance, sparse
neighbor selection and Semi-Nonnegative Matrix Factorization (SNMF) can achieve higher
quality super-resolution images compared to traditional nearest neighbor method [54]

Below is a comprehensive description of these variables, their data characteristics, and
the interpolation techniques employed. The variables included coastal flood occurrences as
the target variable, alongside ESL, coastline proximity, slope, elevation, mangrove distance,
population, and settlement types.

• The coastal flood occurrence, serving as the target variable, was defined as a coastal
flood event lasting at least one day, as acquired from the Global Flood Database from
2000 to 2018, https://global-flood-database.cloudtostreet.ai (accessed on 10 December
2021). These coastal flood occurrence data were recorded as binary values (1 indicating
a flood, 0 indicating no flood) [40] with raster format in 250 m grid size. However,
potential biases, such as false positives, were acknowledged in the model-generated
data. To harmonize the data into a 30 m grid size, we resampled the aforementioned
data using nearest-neighbor techniques, as this pertains to classified (binary) data, and
utilized the mask with the elevation as a boundary.

• ESL was identified as a critical variable due to the escalating risk of coastal floods as-
sociated with sea-level rise [24]. We used the global ESL projections data by European
Commission, gathered from http://data.europa.eu/89h/jrc-liscoast-10012 (accessed
on 9 August 2021) [39]. The data, in point format, has presented probabilistic projec-
tions of ESL until the end of the 21st century along the global coastline, considering the

https://global-flood-database.cloudtostreet.ai
http://data.europa.eu/89h/jrc-liscoast-10012
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contributions of mean sea level, tides, waves, and storm surges [39]. These data were
utilized due to their recognition of sea level and consideration of its temporal vari-
ances, which address the challenges encountered in Copernicus Marine and ECMWF
data [55,56]. Copernicus marine operational ocean models can forecast extreme coastal
water levels with satisfactory performance but underestimate peak magnitudes by
10% for water levels and 18% for surges [56], while ECMWF, i.e., ORAS5, still un-
derestimates the temporal variance of sea level and continues exhibiting large SST
biases in the Gulf Stream and its extension regions [55]. For instance, these European
Commission datasets were previous used in the study of worst-case scenarios for
ESL [57].
Specifically, we used median values of the ESL data, for period baseline, RCP45-2050,
RCP4.5-2100, RCP8.5-2050, and RCP8.5-2100 [39]. The distance of each point is ap-
proximately 25 km. We used median values of the ESL data, for period baseline,
RCP45-2050, RCP4.5-2100, RCP8.5-2050, and RCP8.5-2100. These data were subse-
quently mapped spatially and converted into raster format with a 0.54 grid size. A
bilinear resampling technique was employed to transform the grid size to 30 m, align-
ing with previous study [50]. We hypothesized that regions within the same grid
exhibit similarities in metocean and atmospheric conditions, as well as in trends of
climate extremes. The inland areas with elevations below the ESL were anticipated to
be inundated by ESL and were consequently treated as the ESL variable in meter units.

• Coastline proximity is an accumulated distance for each grid within the boundary
to the coastline. Prototype Global Shoreline Data, from NOAA, https://shoreline.
chs.coast.noaa.gov/data/datasheets/pgs.html (accessed on 17 September 2021), were
used to calculate this coastline distance of each cell in 30 m grid size using Euclidean
distance considering weight of other cells. The area closer to the coastline is considered
more prone to coastal flood risk. These data were shown in an index unit.

• Elevation and slope emerged as significant variables in assessing coastal flood risk [7].
Elevation was measured in meters above sea level (masl), and slope, representing
the gradient of the land surface (degree). These data were derived from the Coastal-
DEM dataset, https://go.climatecentral.org/coastaldem (accessed on 17 September
2021) [41]. The data which were simply resampled from 90 m to a 30 m grid size using
bilinear resampling methods to do this given the elevation is continuous variable. As
mentioned earlier, in the bilinear interpolation, the values of the four nearest cells are
averaged to determine the value of the new cell [50]. Only elevation below 10 m asl
and hydrologically connected with coast were included in this screening. In this case,
we assumed and treated sub grid features like sand dunes as part of the elevation data,
acknowledging the potential limitations of this approach. Subsequently, slope values
were generated based on resampled elevation data. Consequently, the slope datasets
were in a 30 m grid format.

• Mangrove distribution was incorporated as a key natural barrier. Therefore, we
used the geographic feature data of mangrove proximity, as the key variable. This
variable was quantified by mangrove distance—the Euclidean distance from each
grid to the nearest mangrove point [58–62]. This variable was collected from previous
research by Giri et al., (2011), https://data.unep-wcmc.org/datasets/4 (accessed on 8
June 2021) [63]. Mangroves are recognized for their ability to attenuate wave energy
and reduce water heights, thereby mitigating flood risks [58–62]. These data were
represented in an index unit.

• Population data, both baseline and projected, were utilized to assess the relationship
between population influence to coastal flood occurrence [5]. The study used the
Global Population Projection Grids, acquired from Socioeconomic Data and Applica-
tions Center, (SEDAC), https://doi.org/10.7927/q7z9-9r69 (accessed on 15 February
2022). This source provided total population estimates from 2010 to 2100 based on
various Shared Socioeconomic Pathways (SSPs) both baseline and SSP 1–5 in 1 km
grid size [43]. The data on 2000 were used as the baseline, while data on 2050 and 2100

https://shoreline.chs.coast.noaa.gov/data/datasheets/pgs.html
https://shoreline.chs.coast.noaa.gov/data/datasheets/pgs.html
https://go.climatecentral.org/coastaldem
https://data.unep-wcmc.org/datasets/4
https://doi.org/10.7927/q7z9-9r69
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for five SSPs were used as projection datasets. Population data is in continuous and
exhibit gradual changes across geographic areas. Therefore, to harmonize the data
into a 30 m grid size, we used bilinear interpolation because it calculates the output
value based on the average of the four nearest pixel values, providing a smoother
transition and reducing the blocky appearance that can occur with nearest-neighbor
interpolation. This is particularly important in population data, where abrupt changes
can lead to misinterpretations of demographic distributions [51]. The population data
were presented as number of people.

• Settlement types were based on population size and distance to urban centers, called
Urban Residential Catchment Areas (URCAs), acquired from Cattaneo et al. (2021) [44].
This study has been adapted and modified into ten categories of urban settlement types
to simplify it. URCA types 1 to 7 were retained in this study. URCA types 9–28 were
classified into Type 8, rural areas, while the remaining types (URCA type 29 and 30)
were maintained and classified as type 9 and type 10, respectively. This classification
aids in evaluating the vulnerability of different settlement types to flooding [44]. The
data were originally in 90 m grid size in a raster format. We simply resampled into
30 m using nearest-neighbor as the data in a categorical format. These data were
presented in an index unit (types).

Following the transformation of all aforementioned data to a 30 m grid size, all
variables were subsequently converted and standardized into a grid-based format and
consolidated into a feature grid-based table. We stratified the datasets to address the
imbalance in coastal flood occurrences, where non-flooding cases were more prevalent.
Stratification enhances risk analysis by balancing the dataset, as demonstrated in previous
studies [7,64]. We then divided the stratified data into training (70%) and testing (30%)
datasets to develop and validate the GeoAI model.

2.2.3. Risk Simulation

This study utilized ensemble machine learning (ML) models—RF, kNN, and ANN—to
simulate coastal flood risks. The selection of these models was informed by their proven
effectiveness in flood risk assessments and climate change risk assessments, as documented
in the literature [65,66]. The RF algorithm, an ensemble learning method, constructs
multiple decision trees and aggregates their outputs by majority vote for classification
tasks or averaging for regression tasks. RF is known for its high precision and reduced
bias, making it ideal for coastal flood risk classification [66]. The kNN algorithm uses the
proximity of data points to classify data [67]. In this study, the parameter k was initially
set to 5 and tuned to 18 to achieve the highest accuracy. ANNs were employed for pattern
recognition and classification tasks [68]. They are particularly effective in capturing complex
relationships in data, making them suitable for predicting coastal flood occurrences.

2.3. Evaluation of the Coastal Flood Risk Utilizing the IPCC Risk Approach

A comparison was made using the IPCC risk framework to evaluate the GeoAI
model’s performance against conventional approaches. The IPCC approach was applied
to the entire study area, with key variables standardized and adjusted according to their
relevance to hazard, exposure, and vulnerability components [69]. The performance of
the IPCC approach was assessed by comparing its risk predictions with historical coastal
flood occurrences.

The IPCC approach was applied to the entire study area, with key variables standard-
ized from 0 to 1, where 1 indicates a higher contribution to flood risk. Several adjustments
were made:

• ESL: This is used directly as a hazard component, with higher ESL indicating more
significant risk.

• Coastline Proximity: Reversed, so areas farther from the coast were assigned lower
risk scores.

• Elevation: Reversed, with higher elevations considered less risky.
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• Slope: Reversed, with flatter areas assigned higher risk scores due to increased
flood susceptibility.

• Mangrove Distance: Reversed, with greater distances from mangroves contributing
more to risk.

• Population (SSPs): Treated as a vulnerability component, with higher populations
increasing risk.

• Settlement Types: Reversed, assuming rural areas have lower adaptive capacity and
higher vulnerability.

Risk scores were calculated using two weighting methods: identical weights for all
variables and weights based on Random Forest Feature Importance. This produced a coastal
flood risk score from 0 to 1, with 1 indicating a high likelihood of flooding. The IPCC risk
results were then compared to historical flood occurrences to evaluate the model’s accuracy.
This provided a benchmark to assess the GeoAI model’s effectiveness. While the IPCC
approach offers a standardized method, the GeoAI model may provide more localized and
accurate predictions, especially where traditional methods may be less effective.

2.4. Comparison of Model Performance

The model’s performance was evaluated using a confusion matrix and classification re-
port. The classification model can make two types of “wrong” predictions. First, the model
could predict an area will be flooded when the area is not flooded (false positive). Secondly,
the model could predict that an area will not be flooded when the area is flooded (false
negative). Avoiding the second point is crucial as it aims to prevent the underestimation of
flood damage, which could potentially lead to countries receiving less financial support.
Thus, the recall score should be maximized to avoid this issue. The recall is a measure of
how many truly relevant results are returned. It was calculated by dividing the number of
true positives (TP) by the number of true positives plus the number of false negatives (FN).

A confusion matrix (metrics accuracy) and classification report were used to evaluate
the model’s performance. The model optimization was performed to tune the model where
recall and f1-score are expected to be higher than 60% as a threshold for the model. Only
the model that satisfied this score will be used for further estimation and projection. The
final coastal flood risk model was then obtained, resulting in a prediction of coastal flood
occurrences. Furthermore, this study used these performance tests, namely recall score,
precision score, and f1 score, to compare the results of GeoAI models with the IPCC risk
approach for coastal flood risk assessments. As explained earlier, the recall score represents
the percentage of actual positives that the model correctly identified. The precision score
shows the actual negatives that the model correctly identified, and the f1 score is an average
of both recall and precision scores.

2.5. Evaluation of Spatial–Temporal Projection of Coastal Flood Occurrence Under Climate Change

The final step involved projecting coastal flood risks spatially and temporally for the
years 2050 and 2100. This was achieved by incorporating population projections (using
SSPs 1 to 5) and ESLs (based on RCP 4.5 and 8.5 scenarios). The projected variables were
applied to training simulation in the selected GeoAI model to generate coastal flood risk
maps for these future periods. The coastal flood grids were used to identify and estimate
the populations and settlements at risk. It overlaid the coastal flood occurrence grid with
the population and World Settlement Footprint (WSF) map from [70].

In the final step, this section explored the significance of mangroves as Eco-DRR,
utilizing the GeoAI approach derived from ML models, mainly the RF. The RF is equipped
with an embedded library that identifies the variables that significantly contribute to the
target variable or the occurrence of coastal floods. By highlighting the role of mangroves,
this paper emphasizes the importance of integrating ecological approaches into disaster
risk assessment and further coastal flood management efforts.
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2.6. Revealing Mangrove Significance Using Feature Importance Based on RF Model

A feature importance score represents the importance of a particular feature in making
predictions. The only RF model that can provide feature significance was available. Thus,
regardless of the prediction model employed (with a recall score greater than 60%), the
feature significance will only be derived from the RF model in this investigation. Feature
significance is determined by calculating the reduction in node impurity, considering the
chance of accessing that node. The node probability may be determined by dividing the
number of samples that reach the node by the total number of samples. As the value
increases, the importance of the trait becomes more significant. This work used the Scikit-
learn toolkit to compute the feature’s importance in the RF algorithm. RF combines
the bagging algorithm with the random subspace method. It uses decision trees as the
foundation for the classifier. Scikit-learn found out how important each node in a decision
tree was by figuring out the Gini significance, which is the average increase in purity
that happens when you split a variable [71]. In this case, feature importance was used to
understand each feature’s contribution to flood risk prediction.

3. Results
3.1. Coastal Flood Pathways and Key Variables

This study identifies key variables and pathways contributing to coastal flood risk,
focusing on geophysical, hydrometeorological, and socioeconomic factors. The selected
variables, illustrated in Figure 2, included ESL, coastline proximity, elevation, slope, man-
grove distance, population, and settlement types. These variables were subsequently
utilized to predict coastal flood occurrence as the target variable. These variables were
considered to play a critical role in the occurrence and extent of coastal floods.
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Figure 2. Coastal flood pathways and key variables adapted from [72].

A developed GeoAI approach was demonstrated in El Salvador as a case study to
assess the impact of coastal flooding. El Salvador is a Central American nation with a
307 km coastline along the Pacific Ocean. Figure 3 in the study illustrates the coastal flood
occurrence in El Salvador between 2000–2018 as the target variable. Upon examination of
historical records of coastal floods, a bias (false positive) in the mapping data was identified.
This limitation has affected the accuracy of the simulation. Additionally, Figure 3 presented
an exploratory data analysis of the critical variables in El Salvador during the baseline
period. The ESLs ranged from 0 to approximately 2 m above sea level. The proximity to
the coastline was consistent with the slope and distribution of mangroves. Most areas
exhibited a slope of less than 2.5 degrees and were situated within 5000 units of proximity
to the coastline. In El Salvador’s LECZ, the population density averaged 144 people per
grid unit, with a maximum of 812 individuals per grid. The study area in El Salvador
encompassed seven towns, eight rural areas, and nine dispersed towns, predominantly
comprising rural areas.
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Figure 3. Coastal flood occurrences and seven key forcing variables in El Salvador.

3.2. Coastal Flood Risk Utilizing the GeoAI Approach

The study utilized three ML models—RF, kNN, and ANN—to assess coastal flood risks
in El Salvador following a GeoAI approach. The RF model, an ensemble learning algorithm
aggregating multiple decision trees, exhibited robust predictive capability for coastal flood
occurrence (Figure 4a). The model’s predictions closely matched historical coastal flood
maps, demonstrating robustness in spatially identifying areas most susceptible to coastal
flooding. In contrast, the kNN model underestimated coastal flood risks, particularly
regarding spatial predictions, as shown in Figure 4c. Meanwhile, the ANN model resulted
in poor spatial predictions, as illustrated in Figure 4d. The model identified few coastal
flood zones geographically despite being tuned.
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The confusion matrix and classification report were utilized to evaluate the perfor-
mance of each ML model, as illustrated in Figure 5. The GeoAI approach, employing the
RF model, demonstrated high efficacy in predicting coastal flood occurrence. The RF model
attained a precision score of 0.86, a recall of 0.67, and an accuracy of 0.99. However, the
model exhibited a substantial false-negative value of 3119. In contrast, the classification
report of kNN indicated a precision score of 0.78 and a recall score of 0.39, both inferior to
the RF model, with considerable challenges in accurately identifying all instances of coastal
flooding. The ANN model’s classification report revealed a precision score of 0.79, but its
recall was notably low at 0.13 despite an overall accuracy of 0.98.

3.3. Coastal Flood Risk Utilizing the IPCC Risk Approach

The IPCC has developed a risk approach to assess coastal flood risk based on the
combination of exposure, vulnerability, and hazard [73]. In this study, the IPCC risk
approach was applied to assess the coastal flood risk in El Salvador using two methods: the
same weights for all variables and adjusted weights based on RF feature importance results
(Figure 6). RF is the only model that provides feature importance scores, which is the
primary reason for its utilization in this study. These feature importance scores represent
a metric that indicates the significance of a particular variable in making predictions.
They demonstrate the relative importance of each variable in contributing to coastal flood
risk. Figure 6 illustrates the feature importance score of each variable, considering future
changes (utilizing updated datasets on population and ESL). A higher score indicates
greater importance of the variable. The feature importance scores indicated that the
mangrove proximity variable exhibited the highest contribution, followed by population,
coastline distribution, and settlement types, respectively. These scores were utilized for the
weighting in the IPCC risk approach.
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The results were presented on a map that showed the coastal flood risk range from 0 to
1, where 1 indicates a more severe risk. The map was overlaid with historical coastal flood
data indicated in red (Figure 7—top panel). Both weighting methods were able to detect
coastal flood risk in a spatial manner. However, evaluating the same weighting method
between coastal flood risk and historical occurrence revealed a higher incidence of coastal
floods in the 0.5 risk score (Figure 7—bottom panel)., suggesting that the risk approach
did not yield satisfactory results. Meanwhile, on the adjusted weight, a risk score over
0.7 detected more coastal flood occurrences, which indicated that the IPCC risk approach
with this weighting method could detect the coastal flood.
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3.4. Comparison Between the GeoAI Model and the IPCC Risk Approach

This study compared the performance of GeoAI models with the IPCC risk approach
for coastal flood risk assessment based on the model results (recall score, precision score,
and f1-score), as detailed in Table 2. The RF model was chosen for its superior performance,
demonstrating higher precision, recall, and accuracy than the kNN and ANN models.
Specifically, the RF model achieved a precision score of 0.86, correctly identifying 86% of
the predicted positive coastal flood cases. The recall score was 0.67, indicating the model’s
ability to correctly identify 67% of the actual positive coastal flood cases. Furthermore, the
RF model exhibited an impressive accuracy score of 0.99, accurately classifying 99% of the
coastal flood cases.

In contrast, the IPCC risk approach was evaluated using two different methods: equal
weighting for all variables and adjusted weighting based on RF feature importance. The
results showed that the same weighting method was less effective, with an f1 score of 0.49,
showed the lowest accuracy in terms of detecting coastal flood risk. On the other hand, the
adjusted weighting method improved the detection of coastal flood occurrences spatially,
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suggesting that the IPCC risk approach with this method could better identify flood risks.
Yet, all scores showed poor results with only 0.01 score.

Table 2. Evaluation performance of the GeoAI and IPCC risk approach.

Metric Accuracy RF kNN ANN IPCC Risk
Same Weight

IPCC Risk
Adjusted Weight

TN 471,614 471,602 472,318 74,396 465,421
FP 1031 1043 327 398,248 9481
FN 3119 5792 8339 404 7224
TP 6442 3769 1222 9158 80

Total Observation Data 482,206 482,206 482,206 482,206 482,206
Recall Score 0.67 0.39 0.13 0.96 0.01
Precision Score 0.86 0.78 0.79 0.02 0.01
f1-score 0.77 0.59 0.46 0.49 0.01

3.5. Spatial–Temporal Projection of Coastal Flood Occurrence Under Climate Change

This study employed the RF model, identified as the best model, to project the occur-
rence of coastal floods under future climate change scenarios. The RF model demonstrated
high accuracy when applied to future datasets (Figure 8); however, there was a noted de-
cline in recall, indicating that the model may overlook some areas at risk of coastal flooding.
This issue underscores the necessity of fine-tuning model parameters or incorporating
additional data to enhance recall and overall predictive performance. Specifically, four
projection datasets were selected based on their high recall scores to predict coastal flood
occurrences in 2050 and 2100. For period 2050, it included RCP4.5 with SSP3 (cf_rf_45_SSP3)
and RCP8.5 with SSP4 (cf_rf_85_SSP4). While for period 2100, it included RCP4.5 with
SSP3 (cf_rf_45_SSP3) and RCP8.5 with SSP2 (cf_rf_85_SSP2).

The geographical analysis for El Salvador, based on the aforementioned four projection
datasets, indicated a projected rise in coastal flood spots, particularly under future climatic
scenarios, as seen in Figure 9. The total number of predicted coastal flood points in the
coastal zone was 29,101, which was slightly lower by 2769 points compared to historical
occurrences. For instance, in the RCP4.5 scenario with SSP1 in 2050, the predicted number
of coastal floods was 22,958, lower than both the baseline model and historical data.
However, in 2100, this number increased to 38,268, indicating a long-term impact of climate
change. Under the RCP8.5 scenario with SSP1 in 2050, the predicted number of floods was
23,297, which also increased to 37,923 by 2100. Temporal comparisons within the RCP4.5
scenario indicated a gradual decrease in coastal flood occurrences from 22,958 points in
2050 (SSP1_50) to 13,321 points in 2100 (SSP3_100). Conversely, under the RCP8.5 scenario,
flood occurrences increased in certain cases, particularly in SSP5, where the number of
predicted flood points rose from 27,099 in 2050 to 49,092 in 2100. This trend underscores the
significant impact of both climate and socioeconomic factors on future coastal flood risks.

To identify future coastal flood occurrence, this study also used all the projection
datasets (Figure 10). This combination spanned RCP4.5 and 8.5 in the period 2050 and 2100
considering SSP1 to SSP5. In total, there were 20 scenarios compare to baseline projection
and historical coastal flood occurrence. The projections indicated an increase in coastal
flood occurrences over time, with the extent of the increase depending on the selected
scenario, as illustrated in Figure 10. Notably, the highest projected percentage of coastal
flood occurrence was found in the “cf_rf_45_SSP5_100” scenario, predicting that 3.09% of
coastal floods would occur by 2100, an increase of 1.28% from the baseline. In contrast,
the lowest projected percentage was observed in the “cf_rf_45_SSP3_100” scenario, with
a value of 0.83%. When comparing the periods, coastal flood occurrence was generally
higher in 2100 than in 2050, illustrating the influence of climate and socioeconomic changes
on increasing flood risks over time. The projections also showed that the highest coastal
flood percentages were associated with SSP5 scenarios in both RCP4.5 and RCP8.5, while
the lowest percentages were linked to SSP3 scenarios.
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3.6. Mangrove Significance as Eco-DRR on Coastal Flood Risk Reduction

The study utilized the GeoAI approach to assess the impact of various variables on
coastal flood occurrences, with particular emphasis on the role of mangroves. The RF
model revealed that proximity to mangroves was the most significant variable influencing
coastal flood risk, achieving a feature importance score of 0.34. The results demonstrated a
negative relationship between mangrove proximity and flood occurrence, suggesting that
the closer an area is to mangroves, the higher the likelihood of flood occurrence. Specifically,
coastal floods were more frequent within 0–500 m of continuous mangroves, with over
11,000 flood points observed in this range, as illustrated in Figure 11. In contrast, regions
further than 1500 m from mangroves, particularly areas without continuous mangrove
coverage, experienced significantly fewer floods. Spatial analysis of the El Salvador coast-
line further supported these findings, showing that areas with dense mangrove presence
had substantially fewer flood points than regions lacking continuous mangrove cover. In
areas with continuous mangroves, only 3786 grids of coastal floods were recorded, while
371,751 grids in the same region were flood-free. Additional variables, such as coastline
proximity and population density, also played a role in flood risk, each with an importance
score of 0.23.
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4. Discussion

Identifying coastal flood pathways and key variables is essential for effective flood
risk management. Using coastal flood occurrence as a binary variable in the GeoAI model
provided a clear framework for simulating flood risks. However, potential biases in the
flood occurrence data, such as false positives, must be carefully considered to ensure
the accuracy of the results [40]. The seven key variables identified have revealed their
relationship to coastal flood occurrences. Including ESL as a key variable reflects the
growing urgency of addressing sea-level rise. The study’s findings underscore the need for
incorporating TWL in flood risk assessments. The probabilistic projections of ESL under
different emission scenarios offer a robust foundation for long-term flood risk management
strategies [74,75]. Furthermore, the study reaffirmed the significance of elevation and
slope in determining coastal flood risks. Low-lying areas with low gradient slopes are
particularly vulnerable to flooding, emphasizing the importance of detailed topographic
data in flood risk assessments. According to previous studies, slope contributed to over
25% of flood risk prediction [76].

In integrating geographic features, coastal proximity and mangrove distance were
also found essential for the simulation. Mangroves are crucial in mitigating flood risks,
acting as natural barriers that reduce wave energy and water heights. The inclusion of
mangrove distance as a variable in the model highlights the importance of preserving these
ecosystems for coastal flood protection. The study’s findings align with previous research
that has demonstrated the effectiveness of mangroves in reducing the impact of coastal
floods [58–62]. The study’s focus on population distribution and settlement types adds a
critical dimension to coastal flood risk prediction. By considering SSP data on projected
population growth, the research provides valuable insights into the future impacts of
flooding on different settlement types. The classification of settlements based on their
proximity to urban centers and population density helps prioritize areas for adaptation
efforts, particularly those most at risk [4,5,44].

The GeoAI-based coastal flood risk assessment in El Salvador revealed that the RF
model outperformed the kNN and ANN models’ prediction accuracy and spatial dis-
tribution of coastal flood risks. The RF model’s high precision and accuracy indicate its
robustness in predicting coastal flood events and its potential value in disaster preparedness
and response strategies [77]. However, the model’s significant number of false negatives
raises concerns, as these missed predictions could have critical implications for disaster risk
management, particularly in areas where the model does not sufficiently capture coastal
flood risks. This limitation suggests that additional variables, such as land-use changes and
wave dynamics, might need to be incorporated into the model to enhance its predictive
capability [78].

The kNN model, while simpler and easier to implement, demonstrated significant
limitations in predictive accuracy, particularly in spatial predictions. The lower precision
and recall scores compared to the RF model suggest that the kNN model may not fully
capture the complexity of coastal flood dynamics. The underestimation of flood risks
and the higher number of false positives could lead to unnecessary emergency responses,
highlighting the importance of model selection in risk assessment studies. The results
align with previous studies that found kNN models to be less effective than RF in similar
contexts [7,78].

Conversely, the ANN model, while theoretically capable of capturing complex patterns
in data, underperformed in this study. Even after optimization, the model predicted a mini-
mal number of coastal flood occurrences. The ANN model’s poor performance, particularly
its low recall score, points to potential issues related to class imbalance in the training data.
The model’s tendency to predict the majority class (non-flooding events) more frequently
than the minority class (flooding events) likely contributed to its inability to accurately
predict coastal floods [68]. This finding underscores the importance of addressing data
imbalances when applying ANN models in environmental risk assessments. Additionally,
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the model’s limited consideration of relevant variables, such as typhoon frequency and
topographic wetness index, may have further hindered its predictive capability [64,65,77].

The comparison between the GeoAI Model and IPCC risk results underscores the
effectiveness of the GeoAI approach, particularly the RF model, in predicting coastal flood
risks. The superior performance of the RF model aligns with previous studies that demon-
strated its high sensitivity and effectiveness in flood hazard risk assessments. Wang et al.
(2015) highlighted the RF model’s ability to efficiently handle large databases and provide
accurate predictions by estimating the importance of specific variables [79]. Similarly, its
use in modeling urban coastal flood severity from crowd-sourced data further validated its
low false negative rate and robust predictive capabilities [66]. In contrast, the IPCC risk
approach, which relies heavily on historical data and a weighting method, was found to be
less effective in capturing the complex dynamics of coastal flood occurrences. The IPCC risk
approach requires human intervention (assigning weights to features) and has limitations
in handling multi-dimensional data [80]. The equal weighting method, in particular, failed
to provide reliable risk assessments, as evidenced by the concentration of flood occurrences
at a mid-range risk score. However, when the IPCC approach was adjusted based on RF
feature importance, its performance improved, indicating that variable weighting plays a
crucial role in risk detection accuracy. The results of this study are consistent with previous
studies that also found the limitations of the IPCC risk approach in predicting coastal flood
risk accurately. For instance, Lin (2019) [81] noted that the IPCC risk approach underesti-
mated the flood risk in some regions due to the lack of consideration of local topography
and land cover characteristics. In summary, utilizing the GeoAI approach advances the
accuracy of the coastal flood risk assessment.

The advantages of the GeoAI approach, specifically its ability to integrate diverse data
sources, including spatial and temporal data, were evident in its superior performance
over the IPCC approach. GeoAI’s capability to analyze complex datasets and identify
patterns that traditional methods might overlook was crucial in enhancing coastal flood
risk predictions. This aligns with findings from Li and Hsu (2022), who demonstrated the
efficacy of GeoAI and deep learning in accurately assessing coastal flood risk in specific
areas [21]. The comparison between the GeoAI and IPCC approaches also highlights the
flexibility and tunability of ML models like RF, which can be optimized to achieve high
accuracy, unlike the more rigid IPCC approach. Additionally, GeoAI was not influenced
by the weighting method that challenged the IPCC risk approach. This study, therefore,
reinforces the potential of GeoAI as a powerful tool for coastal flood risk assessment,
offering more detailed and reliable insights for risk management and disaster preparedness.
The findings contribute to the growing body of literature advocating for the integration
of advanced GeoAI methodologies in environmental risk assessments, particularly in the
context of climate-induced coastal flooding [19–21,82].

The spatial-temporal analysis underscores the effectiveness of the RF model in pro-
jecting future coastal flood occurrences under various climate and socioeconomic change
scenarios. Despite its effectiveness, there was a slight decline in recall, suggesting that
the model could underestimate risks in some areas. Based on RF projections of coastal
flood occurrences, the findings are consistent with existing literature, which indicates a
rising trend in coastal flood risk due to factors such as sea-level rise and increased storm
surges [74,83,84]. The variations in coastal flood occurrences across different SSPs and
RCPs highlight the significant role of climate and socioeconomic factors in influencing flood
risks. Specifically, the higher flood percentages associated with SSP5 scenarios suggest
that regions with fossil-fuel-driven development may be more vulnerable to coastal flood-
ing, aligning with the assumptions of the RCP8.5 scenario regarding higher greenhouse
gas emissions and more severe climate impacts [85]. The spatial analysis of coastal flood
occurrences in El Salvador further illustrates the model’s utility in identifying regions at
heightened risk. The increased predicted flood points over time, particularly under RCP8.5,
indicate the potential for more severe flooding, necessitating proactive measures to mitigate
these risks. The comparison between different periods within the RCP4.5 and RCP8.5
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scenarios underscores the complex interplay between climate change and socioeconomic
developments in shaping future flood risks.

To reveal the contribution of mangroves in reducing coastal flood risk, the feature
importance results strongly emphasize the importance of mangroves as critical natural
barriers against coastal floods, aligning with previous studies highlighting their role in
mitigating flood risks [59]. The study revealed that proximity to mangroves significantly
reduces flood occurrences, as observed in the El Salvador region. Mangrove proximity
contributed one-third of the flood risk prediction (0.34), while coastline proximity accounted
for nearly one-quarter (0.23), as shown in Figure 6. This finding is consistent with research
demonstrating that mangrove belts—whether thousands or hundreds of meters wide—can
significantly decrease the impact of coastal flooding by reducing storm surge height, wave
energy, and wind velocity [8,58,61,62].

Mangroves’ protective capacity stems from their complex root systems, which stabilize
coastlines, reduce erosion, and attenuate wave forces. Their ability to reduce storm surge
heights by up to 66%, as observed in regions like the Philippines and Vietnam, underscores
their effectiveness in protecting vulnerable coastal zones [58,60]. In El Salvador, areas with
continuous mangrove cover experienced fewer floods, reinforcing the hypothesis that intact
mangrove ecosystems play a crucial role in flood mitigation.

While other variables, such as coastline proximity and population density, were also
crucial in predicting flood risk, their influence was secondary to that of mangroves. The
results highlight the need to prioritize the preservation and restoring mangrove ecosystems
as a nature-based solution for coastal flood risk reduction. This finding is consistent with
global research underscoring mangroves’ role in reducing flood heights, duration, and
impacts in low-lying coastal areas [14,59–61].

Furthermore, we emphasized the low contribution of ESL (2%) in the coastal flood risk
prediction. Previous studies have revealed that ESL was one of the key factors influencing
the coastal flood hazard between 2000 and 2100 [86,87], although the percentage contribu-
tion was not mentioned. In this study, we used the point data of ESL, which acknowledges
the combination of the mean sea level, tides, waves, and storm surges [39]. However, our
limitation was shown in spatialization into grid-based data format, resulting in higher bias,
which affects the ESL contribution results in the model.

Additionally, ESL’s low importance score was also attributed to the local characteristics
of the interaction of ESL with other variables, such as the sole factor of tide and wave,
as well as geomorphology [33,34,88], which the study has omitted. The absence of wave-
specific data in the current model limits the direct assessment of wave overtopping and
inundation as contributing factors. The waves were recognized as one of the main physical
drivers of wave overtopping and inundation in El Salvador [46]. For instance, the case of
sea swell events from April to May 2015 led to extreme coastal flooding in El Salvador,
with 268 m of inundation and extreme erosion of 268 m [46]. As mentioned earlier, the
inter-play between waves and tides could influence nearshore wave heights, increasing
the danger of flooding at elevated water levels [33,34]. Moreover, previous studies have
found that mean tide was the second highest contributor to compound flood in coastal
zones in addition to rainfall [7]. Therefore, further research should explore the concept of
calculating the contribution of wave dynamics, tide and surge heights [7,74], to provide a
more comprehensive analysis of physical drivers influencing coastal flooding.

5. Conclusions

This study provides critical insights into the role of GeoAI models, particularly RF, in
predicting coastal flood risks in El Salvador, revealing their advantages over traditional
methods like the IPCC approach. The research successfully identified key coastal flood
pathways and areas of heightened vulnerability by integrating key variables such as ESL, el-
evation, slope, coastal proximity, mangrove ecosystems, population, and settlement types to
predict coastal flood occurrences. The incorporation of mangrove proximity into the model
highlighted the significant protective role of mangroves as natural barriers, consistent with
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existing research that underscores their effectiveness in reducing flood risks. Additionally,
the study demonstrates that low-lying, low-gradient areas with limited natural defenses are
particularly susceptible to flooding, underscoring the importance of detailed topographic
and geographic data in flood risk assessments. The model’s inclusion of socioeconomic
variables, such as population density and settlement type, offers a more nuanced under-
standing of flood exposure and potential future impacts under various climate change
scenarios. In particular, the research emphasizes the importance of considering future
urbanization trends and population growth in flood risk management strategies.

Comparison results showed that the RF model outperformed the kNN and ANN
models in predicting coastal flood risk accuracy and spatial distribution. However, its
tendency to produce false negatives underscores the need for further refinement, possibly
by including additional variables such as land-use changes and climate variability. Despite
these limitations, the RF model’s ability to integrate diverse data sources and its flexibility
in handling complex datasets make it a valuable tool for coastal flood risk assessments.
Moreover, the spatial-temporal projections indicate that future flood risks are likely to
increase due to sea-level rise and more frequent extreme weather events, particularly
under high-emission scenarios such as RCP8.5. This finding highlights the urgency of
implementing proactive adaptation measures, especially in regions projected to face higher
flood percentages under fossil fuel-driven development scenarios.

This study’s findings strongly advocate for the preservation and restoring mangrove
ecosystems as a critical nature-based solution for eco-DRR. Future research should aim
to improve model accuracy by incorporating dynamic factors such as land-use changes
and refining the approach to address false negatives. Additionally, integrating climate
and socioeconomic scenarios into flood risk assessments will be essential for developing
adaptive strategies that protect vulnerable coastal populations and infrastructure in the
face of accelerating climate change.
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