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Abstract

We examine a dynamical system consisting of two distinct, but interactive, subsystems,

namely population dynamics and learning dynamics. The population dynamics formalize that

the population shares of fitter groups increase relatively to those of less fit groups. The

learning dynamics describe that each subgroup adapts its strategy, by placing more weight on

activities contributing more than average to its fitness, meanwhile decreasing weights on

activities contributing less than average.

A saturated equilibrium is a dynamic equilibrium where no subgroup has above-

average fitness, and all subgroups employ best-reply strategies to the population share

weighted average strategy. We demonstrate that if a trajectory converges from the interior of

the state space, then its limit point is a saturated equilibrium. An evolutionary stable

equilibrium is a saturated equilibrium attracting all trajectories starting in a certain

neighborhood of it. The properties of the saturated equilibrium and the evolutionary stable

equilibrium suggest that these concepts are adequate dynamic generalizations of the Nash-

equilibrium and the evolutionary stable strategy of the standard models.
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1. Introduction

Economics has embraced game theory as an important tool for the analysis of strategic

interaction. The main concept forwarded by noncooperative game theory as a predicted

outcome under the assumption of perfect rationality of the agents, is the Nash-equilibrium.

There are however, some difficulties with respect to using game theory in economics. Firstly,

the rationality requirements of game theory are rarely met in an economical context.

Secondly, there may exist multiple Nash-equilibria and it is not always clear how to select

among them. The acknowledgement in game theory of these difficulties has led to a

reexamination of rationality requirements, as well as to a vast array of literature dealing with

less stylized settings. Furthermore, various refinements of the Nash-equilibrium concept have

been formulated, each with its own merit. Evolutionary game theory has gained considerable

popularity, since not only are the Nash-equilibria specified, but also the dynamic process

which may lead to these outcomes, is defined. The rationality requirements under which

evolutionary dynamics may converge to a Nash-equilibrium, are generally remarkably low.

In evolutionary game theory, subgroups within a population traditionally play

genetically predetermined strategies. As a result, the population dynamics depend solely on

the composition of the population [cf. Van Damme (1991)]. The population dynamics favor

the fitter subgroups over the less fit, implying that the population shares of the fitter (less fit)

subgroups increase (decrease). Thus, the strategies used by the more (less) successful

subgroups gain more (less) weight in the population share weighted average strategy. Hence,

changes in average behavior may be observed on an aggregate level, which may appear as

if the population were learning. The replicator dynamics, which are widely used as population

dynamics, converge only to Nash-equilibria for standard models in evolutionary game theory.

Furthermore, an evolutionary stable strategy, one of the strongest refinements of the Nash-

equilibrium concept, is an attractor1 for the replicator dynamics [cf. Taylor and Jonker

(1978)]. These properties inspired interpretations of these dynamics as an inductive learning

process. In reality though, none of the subgroups in the standard models in evolutionary game

1 An attractor is a dynamic equilibrium to which all trajectories reaching a neighborhood of this equilibrium,
converge.
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theory, alter their strategies, nor are they able to do so. Therefore, we can only speak about

learning in an indirect sense. This should not come as a surprise, since the original

evolutionary models were indeed intended to describe the evolution of populations of

individuals whose behavior is primarily genetically predetermined. This precludes the

possibility of direct behavior modification of individuals is impossible. We regard the latter

as a rather unsatisfactory aspect when modelling the strategic behavior of more sophisticated

beings.

We assume that each subgroup in a population, is able to learn in a manner which is

quite similar to a process proposed by Friedman (1991). The subgroups monitor the success

and failure of their behavioral strategy in its strategic environment, and alter their strategies

gradually by placing more (less) weight on those strategies which yield a higher (lower)

payoff. We interpret this adaptive process on the strategies as an inductive learning process.

Meanwhile, the composition of the population changes under evolutionary influences,

implying that the fitter subgroups grow in population share relative to the less fit ones. We

formulate a dynamic system consisting of population and learning dynamics for all subgroups

in the population. The dynamics of the subsystems are quite similar, however we emphasize

the conceptual differences between these interactive subsystems.

We apply generalizations of the saturated equilibrium and the evolutionary stable

equilibrium developed in Joosten (1993), to the present model. A saturated equilibrium is a

rest point of the dynamical system, where all subgroups with positive population share have

equal payoff. All groups with below-average payoff have population share zero and no group

with above-average payoff exists. All subgroups present at any point in time, employ only

strategies that are myopic best-reply strategies to the population share weighted average

strategy. We show that an evolutionary stable equilibrium is an attractor of the dynamics for

some subset of the state space. Whenever the system reaches a point of this subset it

converges to this evolutionary stable equilibrium in a ’well-behaved’ manner. A limit point

is an attractor for at least one trajectory starting in a nonequilibrium point. We show that

every limit point for a trajectory starting in the interior of the state space, is a saturated

equilibrium.

In Section 2 we introduce the model, and in Section 3 we relate our model to

literature on population and learning dynamics. In Section 4 we prove existence of certain

types of equilibria, and show connections between different types of rest points of the
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dynamics. In Section 5 we expand somewhat one on the connections, as well as on the

discrepancies, between strategic stability and dynamic stability in our model. Section 6 briefly

mentions some extensions and Section 7 concludes.

2. Combining population dynamics and learning dynamics

The model which we present in this section, may be regarded as a synthesis between the

model of Friedman (1991) and an earlier model of ours, namely Joosten (1993). Friedman

(1991) analyses classes of dynamics on the Cartesian product of the strategy spaces of a finite

number of agents, and the equilibria of these dynamics. In Joosten (1993), population

dynamics and their dynamic equilibria are examined for very general evolutionary settings.

The approach followed in the latter paper, is generalized in the present one to incorporate

Friedman-type learning dynamics.

We consider a population with n+1 distinguishable, interacting subgroups, where n∈

. Each subgroup plays a (possibly) mixed behavioral strategy. The population and its

subgroups are assumed to consist of very large numbers of randomly mixing individuals. Let

Ip+1 = {1,2,...,p+1} and let Sp = {y ∈ p+1 Σi yi = 1, yi ≥ 0 for all i ∈ Ip+1}. The state space,

the Cartesian product of one n-dimensional unit simplex and n+1 m-dimensional unit

simplices, is denoted byΞ = Sn × Πi Sm. A generic element ofΞ is denoted by an ordered

pair (x,s), where x denotes an (n+1)-dimensional vector of population shares, and s denotes

the Cartesian product of n+1 (m+1)-dimensional vectors, representing the strategies employed

by the subgroups. Let A1,A2,...,An+1 be a collection of n+1 fixed (m+1)×(m+1)-matrices. The

population strategyat (x,s)∈ Ξ is given by S(x,s) =Σj xj sj. We define the payoff function

π:Ξ → n+1, as follows

πi(x,s) = si Ai S(x,s) for all i ∈ In+1. (1)

The payoff function attributes at every state to each subgroup a payoff, depending on the

strategy employed by the subgroup, on the strategies used by other subgroups, and on the

composition of the population. The payoff to a subgroup can be interpreted as its fitness, i.e.
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a measure of potential of this subgroup to reproduce or grow.

The composition of the population evolves in time. The population share of each

subgroup changes in accordance with the fitness of that subgroup relative to the average

fitness of the population. The relative fitness functionf:Ξ → n+1 for every i ∈ In+1, is given

by

fi(x,s) = πi(x,s) − Σj xj πj(x,s) at each (x,s)∈ Ξ. (2)

Before introducing the learning dynamics, we intend to compare for each subgroup, the

contribution of each pure action to the payoff to the subgroup. Let therefore, for all i∈ In+1,

h ∈ Im+1, πi
h(x,s) = eh Ai S(x,s), where eh is the h-th unit vector in m+1, denote the payoff on

pure action h at each state (x,s)∈ Ξ. Let for each i∈ In+1 the function gi:Ξ→ m+1 be defined

by

gi
h(x,s) = πi

h(x,s) − Σk si
k πi

k(x,s) for all h ∈ Im+1. (3)

Note thatπi(x,s) =Σk si
k πi

k(x,s). We call such a function gi:Ξ→ m+1 defined by (3) a marginal

payoff function. It can be shown thatxTf(x,s) = 0 and (si)Tgi(x,s) = 0 for all i ∈ In+1 and all

(x,s) ∈ Ξ. In general, there exist groups with above and below average fitness. Similarly,

there exist pure strategies yielding above- as well as below-average payoffs in general.

We call Gi:Ξ→ m+1 weakly compatiblefor gi:Ξ→ m+1 if

a) Gi is continuous for all (x,s)∈ Ξ,

b) Σh Gi
h(x,s) = 0 for all (x,s)∈ Ξ,

c) Gi
h(x,s) = 0 for all h ∈ Im+1, whenever xi = 0,

d) Gi
h(x,s) ≥ 0 whenever sih = 0,

e) sgn Gi
h(x,s) = sgn gih(x,s) otherwise.

For all y ∈ : sgn y = +1 if y > 0, sgn y = 0 iff y = 0, and sgn y = −1 iff y < 0. Thelearning

process is to be regarded as an inductive rather than a deductive process, hence only

subgroups that are present in the population, are able to learn from the strategic environment,

which is formalized in Restriction (c).
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By now, we are in the position to describe the dynamical system. The population

dynamics are represented by the following (n+1)-system of (autonomous) differential

equations:

dx/dt = H(x,s), for all (x,s)∈ Ξ, (4)

where dx/dt = (dx1/dt,dx2/dt,...,dxn+1/dt) and H(x,s) = (H1(x,s),H2(x,s),...,Hn+1(x,s)) =

(x1f1(x,s),x2f2(x,s),...,xn+1fn+1(x,s)). These population dynamics are known in the literature under

the name of replicator dynamics. The learning dynamicsare described by the following

(n+1)×(m+1)-system of (autonomous) differential equations at each (x,s)∈ Ξ:

dsi/dt = Gi(x,s) for all i ∈ In+1, (5)

where dsi/dt = (dsi1/dt,dsi2/dt,...,dsim+1/dt), and for all i∈ In+1 it holds that Gi:Ξ→ m+1 is weakly

compatible for the function gi.

A trajectory {(x(t),s(t))} t≥0 ⊂ Ξ, is a sequence of states generated by the dynamical

system described by Eqs. (4) and (5). The dynamical system is length preserving, which

implies for each trajectory {(x(t),s(t))}t≥0 that Σi xi(t) = 1 andΣh si
h(t) = 1 for all i ∈ In+1, for

all t ≥ 0 provided ((x(0),s(0))∈ Ξ. This follows from the definitions of the replicator

dynamics and the weakly compatible learning dynamics, since for all (x,s)∈ Ξ

Σi Hi(x,s) = 0, andΣh Gi
h(x,s) = 0 for all i ∈ In+1.

Every trajectory starting inΞ remains inΞ, since for all i∈ In+1, h ∈ Im+1:

xi = 0 implies dxi/dt = 0,

si
h = 0 implies dsih/dt ≥ 0.

Hence, no trajectory traverses any boundary of the state spaceΞ from Ξ.
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3. Learning dynamics and population dynamics: an overview of and

connections with the literature

The population dynamics of Eq. (4) were introduced in game theory by Taylor and Jonker

(1978) under the name of replicator dynamics. The assumption behind Eq. (1), is that the

probability for an individual to be matched with an individual from a certain subgroup is

equal to the population share of this subgroup. Hence, the expected strategy against which

each individual in each subgroup plays is the population strategy. Our model has a position

somewhere in between the asymmetric games in the terminology of Hofbauer and Sigmund

(1988), and the so-called viscous population models [e.g. Myersonet al. (1991)]. In the

former no direct strategic interaction of any subgroup with itself occurs. In the latter each

individual has a higher tendency to interact with members of its own subgroup. We justify

the use of deterministic differential equations in (4) and (5) as an approximation of the

stochastic dynamics by our large-numbers-assumption.

The individuals in our model are not born with a strategy ’preprogrammed’ by nature.

Instead, they are born with a capacity to learn by induction or imitation, a capacity to figure

out how to improve (ceteris paribus) in any situation that might occur. On an aggregate level,

this results in a dynamic process for each subgroup, which we interpret as a learning process.

The learning process is closely related to the dynamics of Friedman (1991). Neither the

composition of the population, nor any of the strategies used by the subgroups, remain

constant in general, hence the population strategy may change in a complicated manner. The

subgroups adapt their strategies ’myopically’ [Kalai and Lehrer (1993)] based on their current

payoffs, as if the strategic environment were not changing. Instead of myopic, we also found

the term ’naive’ in the literature for similar ideas on adaptive learning processes [e.g.

Eichbergeret al. (1993)]. Since the learning process does not forecast and it has no recording

of distant events, it is not sophisticated [cf. Milgrom and Roberts (1991)].

The learning process can be seen as rational within the perceptual and computational

limitations of the agents. Simon (1956) distinguishes subjective and objective rationality.

Subjectively rational behavior is behavior which is rational, given the perceptual and

evaluational premises of the subject. Objectively rational behavior is behavior which is

rational in the ’usual’ sense. The inductive learning process modeled in this paper, is not
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objectively rational, but it can be regarded as subjectively rational. The subgroups favor

namely the strategies of which they expect to improve their payoffs based on the information

which they possess and which consists of their current payoffs.

We provide informal motivations for the learning process, and we regard these

motivations as complementary. The first motivation is inspired by Selten’s (1991) remarks

on rote-learning. Each individual in a subgroup has a certain strategy and receives a certain

payoff. If this activity yields a high (low) payoff, then the probability to discontinue this

activity is low (high). Assuming that all other activities have equal probabilities to be adopted,

this could generate an effect as if the subgroup were learning [see also Friedman and

Rosenthal (1986)]. Other terms connected with behavior modification similar to rote-learning,

are conditioning and reinforcement, many aspects of which have been and are studied in

psychology. The second motivation, influenced by Selten’s (1991) remarks on learning by

imitation, is that individuals imitate the strategies of other individuals in the same subgroup.

If more successful individuals have a higher probability of being imitated than less successful

ones, this could also generate an effect as if the population were learning consciously. The

final motivation is that individuals receiving low payoffs may switch to arbitrary alternatives,

not knowing the payoffs on these alternatives. The latter could be called ’learning by

experimentation’.

Many processes are advanced in the literature to describe different types of learning.

Quite a few employ best-response dynamics [e.g. Gilboa and Matsui (1991)]. Under best-

response dynamics only the weights on the pure strategies that yield the highest payoffs in

the current strategic environment, are increased. The weights on all other pure strategies are

decreased by the same proportion. Hence, it may very well happen that the weight on a

’nearly optimal’ pure strategy is decreased by the same proportion as the weight on the

’worst’ pure strategy. Our learning dynamics differ from these best-response dynamics. The

weights on all pure strategies that give above-average payoffs, are increased, whereas the

weights on all strategies yielding below-average payoffs, are simultaneously decreased.
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4. Dynamic equilibria and limit points

In this section, we examine equilibria of the dynamical system described in Section 2. The

state (y,u)∈ Ξ, is a dynamic equilibriumif H i(y,u) = 0 and Gi
h(y,u) = 0 for all i ∈ In+1, h ∈

Im+1. Occasionally, we call a dynamic equilibrium a rest point. Let p,q∈ Sm and let i∈ In+1,

then p is a myopic best reply for subgroup i against qif ph > 0 implies eh Ai q

= maxj ej Ai q. In that case we will write p∈ MBRi(q), whereas if ui ∈ MBRi(q) for all i ∈

In+1, we will use the notation u∈ MBR(q). If a subgroup with population share equal to one,

employs a strategy which is a myopic best reply against itself, then the dynamical system is

in equilibrium.2 It should be noted that this holds for arbitrary strategies used by the other

subgroups, hence there may exist a multitude of these equilibria.

A dynamic equilibrium (y,u)∈ Ξ is stable, if for any (open) neighborhood U⊂ Ξ of

(y,u), there exists V⊂ U such that any trajectory starting in V remains in U. A stable

equilibrium is called asymptotically stable, if additionally a neighborhood W⊆ V of (y,u)

exists such that any trajectory starting in W converges towards (y,u) [cf. Hirsch and Smale

(1974)]. We have shown that there exist many dynamic equilibria. It need not be that any of

these equilibria is stable, nor that any trajectory converge to any such equilibrium. A state

(y,u) is called a limit pointif there exists a trajectory {((x(t),s(t))}t≥0 ⊂ Ξ, satisfying (x(0),s(0))

≠ (y,u) and (y,u) = Limt→∞ (x(t),s(t)). It need not be that a trajectory starting in a point which

is not an equilibrium, converges, nor need it be that any such trajectory converges. As a

consequence, limit points may not exist.

A state (y,u)∈ Ξ is a saturated equilibriumif for all i ∈ In+1, h ∈ Im+1, it holds that

fi(y,u) ≤ 0 and gih(y,u) ≤ 0. (6)

We firstly prove that each saturated equilibrium is a rest point for the dynamic system

described by Eqs. (4) and (5), then we demonstrate that there always exists at least one

saturated equilibrium. Let C(z) = {j∈ Ip+1 zj > 0} for every z∈ p+1, p = m,n.

2 The proof is omitted.
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Proposition 4.1. Each saturated equilibrium is a dynamic equilibrium.

Proof. Let (y,u) ∈ Ξ be a saturated equilibrium. Let i∈ In+1, since fj(y,u) ≤ 0 for all

j ∈ In+1, it holds that 0 =Σj yj fj(y,u) ≤ yi fi(y,u) ≤ 0. Since i∈ In+1 was taken

arbitrarily, it follows that Hj(y,u) = 0, for all j ∈ In+1.

Note that yi = 0 implies Gi
k(y,u) = 0 for all k ∈ Im+1, suppose therefore i∈ C(y),

and k* ∈ C(ui) exists such that Gik*(y,u) < 0.

Then l* exists, satisfying Gil* (y,u) > 0, implying gil* (y,u) > 0.

This leads to a contradiction, hence Gi
k(x,s) = 0 for all k ∈ Im+1.

Since i∈ C(y) was taken arbitrarily, this completes the proof.

Proposition 4.2. For an arbitrary relative fitness function, and for arbitrary relative

marginal payoff functions, there exists a saturated equilibrium.

Proof. Let F0 be the point-to-set-mapping fromΞ to the subsets of Sn, which for every

(x,s) ∈ Ξ is defined by

F0(x,s) = conv{e(j)∈ n+1 πj(x,s) = maxi πi(x,s)}.

Let for each i∈ In+1, Fi be the point-to-set-mapping fromΞ to the subsets of

Sm, which for every (x,s)∈ Ξ is defined by

Fi(x,s) = conv{e(j)∈ m+1 πi
j(x,s) = maxh πi

h(x,s)}.

Let F be the point-to-set-mapping fromΞ to the subsets ofΞ, which for every

(x,s) ∈ Ξ is defined by F(x,s) =Πi=0,1,...,n+1Fi(x,s). The mappings F0,F1,...,Fn+1 are

upper-semicontinuous by construction, implying that F is upper-semicontinuous

as well.

Since the state space is compact and convex, Kakutani’s (1941) theorem applies.

Hence, (y,u)∈ Ξ exists, satisfying (y,u)∈ F(y,u).

Let (y,u) ∈ F(y,u), then j∈ C(y) impliesπj(y,u) = maxi πi(y,u).

Let c0 = maxi πi(x,s), then

fk(y,u) = πk(y,u) − Σi yi πi(y,u) =

πk(y,u) − Σj∈C(y) yj c0 =

πk(y,u) − c0 ≤ 0, for all k ∈ In+1.

Take k∈ In+1, then h∈ C(uk) implies πk
h(y,u) = maxj πk

j(y,u).
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Let maxj πk
j(y,u) = ck, then (writing C(u,k) for C(uk))

gk
h(y,u) = πk

h(y,u) − Σj uk
j πk

j(y,u) =

πk
h(y,u) − Σj∈C(u,k) uk

j ck =

πk
h(y,u) − ck ≤ 0 for all h ∈ Im+1.

Nachbar (1991) has shown in a different setting that for a large class of ’evolutionary’

dynamics any limit point for a trajectory from the interior of the strategy space, is a Nash-

equilibrium. From the continuity of the right hand sides of Eqs. (4) and (5), combined with

the compactness ofΞ, it follows directly that any limit point (y,u) is a dynamic equilibrium

and that (y,u)∈ Ξ. In the following proposition, we list further properties of a limit point.

Proposition 4.3. Let (y,u) be the limit point for some trajectory {(x(t),s(t))}t≥0 ⊂ Ξ, then the

following properties hold:

i ∈ C(y) implies h∈ C(ui): πi
h(y,u) = πi(y,u) = Σj yj πj(y,u) (7)

h ∈ C(ui): πi
h(y,u) ≤ πi(y,u) (8)

i ∈ C(x(0))\C(y) implies h∈ C(ui): πi
h(y,u) = πi(y,u) ≤ Σj yj πj(y,u) (9)

h ∈ C(ui): πi
h(y,u) ≤ πi(y,u) (10)

i ∉ C(x(0)) implies yi = 0 and ui = si(0) (11)

Proof. Eq. (7) follows from the continuity of the functions H and Gi, for all i ∈ In+1.

Eq.(11) follows from Restriction (c). Eqs. (8) and (10) can be validated as follows.

Suppose for a given i∈ C(x(0)), h ∈ C(s(0))\C(ui) exists such thatπi
h(y,u) >

πi(y,u). Then an∈ > 0 and a set B((y,u),∈) = {(x,s) ∈ Ξ d2((y,u),(x,s))≤ ∈}

exist, such that (x,s)∈ B((y,u),∈) implies gi
h(x,s) > 0. Since (y,u) =

Limt→∞ (x(t),s(t)) there exists t*≥ 0 satisfying d2((y,s),(x(t*),s(t*))) < ∈ and

dsi
h(t*)/dt < 0. The latter leads to a contradiction, since by the forward invariance

of the system sih(t*) > 0, hence (x(t*),s(t*))∈ B((y,u),∈) implies Gi
h(x(t*),s(t*))

> 0. This establishes (8) and (10).

Eq. (9) remains to be proven.
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From the continuity of the functions Gi, combined with Restriction (e) of weakly

compatible dynamics and the convergence, it follows that for all h∈ C(ui), that

πi
h(y,u) = πi(y,u) for all i ∈ C(x(0))\C(y).

Suppose however,πi(y,u) > Σj yj πj(y,u) for some i∈ C(x(0))\C(y), then an

∈ > 0 and a set B((y,u),∈) = {(x,s) ∈ Ξ d2((y,u),(x,s))≤ ∈}, such that

(x,s) ∈ B((y,u),∈) implies fi(x,s) > 0. Since Limt→∞ (x(t),s(t)) = (y,u) there exists

t* ≥ 0 satisfying d2((y,s),(x(t*),s(t*))) < ∈ and dxi(t*)/dt < 0.

However,πi(x(t*),s(t*)) − Σj xj(t*) πj(x(t*),s(t*)) > 0 and xi(t*) > 0 by the

forward invariance, imply Hi(x(t*),s(t*)) > 0. Since (x(t*),s(t*))∈ B((y,u),∈) we

have shown a contradiction, which establishes (9).

Equations (7), (8), (9) and (10) imply that if a trajectory converges, then all subgroups

present, employ only their myopic best-reply strategies against the population strategy in the

long run. Not every subgroup generally survives as time goes to infinity, which occurs if the

subgroup’s myopic best-reply strategy against the population strategy yields a payoff which

is permanently lower than the average payoff of the population. There is a connection

between limit points and saturated equilibria. If, for a converging trajectory inΞ, C(x(0)) =

In+1, then its limit point is a saturated equilibrium. This leads to the following corollary.

Corollary 4.1. Any trajectory starting in a nonequilibrium state where all subgroups have

positive population share, converges only to a saturated equilibrium.

Since an asymptotically stable equilibrium is a limit point for all trajectories starting within

a certain neighborhood of it, it follows immediately that such an equilibrium is a saturated

equilibrium. For the weaker concept of the stable equilibrium, the following is in order.

Proposition 4.4. Every stable equilibrium is a saturated equilibrium.

Proof. Let (y,u) be a stable equilibrium and suppose (y,u) is not a saturated equilibrium.

Then (y,u) is not in the interior ofΞ, since all interior equilibria are saturated.

Hence, eitheri ∈ In+1 exists satisfying yi = 0 and fi(y,u) > 0, orj ∈ In+1 and

k ∈ Im+1 exist satisfying ujk = 0 and gjk(y,u) > 0.
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Suppose yi = 0 and fi(y,u) > 0 for some i∈ In+1. Then by the continuity of f, an

∈ > 0 and aδ > 0 exist such that fi(x,s) > ∈ for all (x,s) ∈ U, where

U = {(x,s) ∈ Ξ maxj xj − yj < δ, j ∈ In+1}.

Let {(x(t),s(t))} t≥0 be a trajectory with (x(0),s(0))∈ U, and xi(0) > 0. Then

(x(t),s(t)) ∈ U, implies Hi(x(t),s(t)) > 0 for all t ≥ 0. Furthermore, there exists

k ≥ 0 such that maxj xj(k) − yj = δ. Hence, {(x(t),s(t))}t≥0 leaves U. This

contradicts (y,u) is stable.

Suppose ujk = 0 and gjk(y,u) > 0 for some j∈ In+1, k ∈ Im+1. Then by the

continuity of gj
k, an ∈ > 0 and aδ > 0 exist such that gjk(x,s) > ∈ for all

(x,s) ∈ U, where U = {(x,s) ∈ Ξ maxl sj
l − yj

l < δ, l ∈ Im+1}.

Let {(x(t),s(t))} t≥0 be a trajectory with (x(0),s(0))∈ U, and xj(0) > 0 and

sj
k(0) > 0, then (x(t),s(t))∈ U, implies Gj

k(x(t),s(t)) > 0 for all t ≥ 0.

Furthermore, there exists k≥ 0 such that maxj xj(k) − yj = δ.

Hence, {x(t),s(t)}t≥0 leaves U. This contradicts the stability of (y,u).

Each equilibrium in the interior ofΞ is a saturated equilibrium, hence not every saturated

equilibrium is stable. The links between stable equilibria and limit points is unclear in general.

Stable equilibria need namely not be limit points, and limit points may be unstable.

An equilibrium (y,u) ∈ Ξ is an evolutionary stable equilibriumif and only if a

neighborhood U⊂ Ξ of (y,u) exists, satisfying for all (x,s)∈ U\{(y,u)}

yTH(x,s) + Σi (ui)TGi(x,s) > xTH(x,s) + Σi (si)TGi(x,s). (12)

In the following we show that each evolutionary stable equilibrium is an attractor, and that

all trajectories starting in U\{(y,u)}, converge to the equilibrium in a ’well-behaved’ manner.

Proposition 4.5. Each evolutionary stable equilibrium is asymptotically stable.

Proof. Let (y,u) ∈ Ξ be an evolutionary stable equilibrium and let U⊂ Ξ be a

neighborhood of (y,u) satisfying (12).

Let V:Ξ→ be defined by V(x,s) = (y − x)T(y − x) + Σi (ui − si)T(ui − si).

Obviously, V(y,u) = 0, and V(x,s) > 0 for all (x,s)∈ U\{(y,u)}.
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Observe that∂V(x,s)/∂xi = −2(yi − xi) and∂V(x,s)/∂si
h = − 2(ui

h − si
h) for all

i ∈ In+1, h ∈ Im+1. Hence,

dV(x,s)/dt =Σi ∂V(x,s)/∂xi dxi/dt + Σi Σh ∂V(x,s)/∂si
h dsi

h/dt =

− 2 Σi (yi − xi) Hi(x,s) − 2Σi Σh (ui
h − si

h) Gi
h(x,s) =

− 2 [(y − x)TH(x,s) + Σi (ui − si)TGi(x,s)] < 0 for all (x,s) ∈ U\{(y,u)} by Eq. (12).

Hence, V is a strict Lyapunov function on U, and (y,u) is asymptotically stable [cf.

Hirsch and Smale (1974)].

Rewriting Eq. (12) as (y − x)TH(x,s) +Σi (ui − si)TGi(x,s) > 0, we can interpret the part before

the inequality, as the inner product of two (n+1)×(m+2)-dimensional vectors namely

((y−x)T,(u1−s1)T,...,(un+1−sn+1)T)T and (H(x,s)T,G1(x,s)T,...,Gn+1(x,s)T)T. Then (12) implies that the

angle between these vectors is always sharp for all (x,s) in U\{(y,u)}. From this geometrical

interpretation, the following may be derived.

Corollary 4.2. The Euclidean distance to an evolutionary stable equilibrium decreases

monotonically in time along each trajectory starting sufficiently close to it.

For instance, an asymptotically stable equilibrium, where trajectories approach the equilibrium

elliptically, is not an evolutionary stable equilibrium. This distinction between asymptotical

and evolutionary stability is in line with e.g. Weissing (1990).

5. Strategic stability versus dynamic stability

The central concept in noncooperative game theory is the Nash-equilibrium, and it is well

established in evolutionary game theory, that Nash-equilibria correspond with fixed points for

the replicator dynamics. Nachbar (1991) has shown that if a trajectory under very general

’evolutionary’ game dynamics converges from the interior of the strategy space, its limit point

corresponds with a Nash-equilibrium. The second central concept in evolutionary game theory,

the evolutionary stable strategy, was introduced by Maynard Smith and Price (1973). The

evolutionary stable strategy is a Nash-equilibrium which is supposed to be stable against an
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invasion of a small group employing a mutant strategy. However, the dynamical approach

which seems to be implied by the very concept of evolutionary stability, is due to Taylor and

Jonker (1978). This contribution introduced the replicator dynamics as selection dynamics in

evolutionary game theory. Taylor and Jonker (1978) and Zeeman (1981) showed that

evolutionary stability corresponds with asymptotical stability for the replicator dynamics, not

vice versa. Bomze and Van Damme (1992) generalized these results for arbitrary fixed

strategies combined with the replicator dynamics, while allowing the presence of more than

one mutant strategy. Binmore and Samuelson (1992) remark that evolutionary equilibria

should be able to repel several overlapping invasions of mutants. Swinkels (1992) argues that

evolutionary equilibria should also be persistent against invading mutant strategies that are

best replies for the strategic environment, which arises by their invasion of the system. It is

now widely recognized that in essence, the original evolutionary stable strategy concept is a

static concept, strategically stable against one invasion of mutants. True evolutionary stability

requires an analysis of the dynamical system. Reconciling strategic stability and dynamic

stability is not straightforward, as the remainder of this section may demonstrate.

Let s ∈ Sm, u = (u1,u2,...,un+1), then u−i∪s = (u1,...,ui−1,s,ui+1,...,un+1). The strategy xi ∈

Sm is a best reply of subgroup i in (y,u), if x i ∈ {s ∈ Sm s Ai S(y,u−i∪s) = maxz πi(y,u−i∪z),

z ∈ Sm}, and write xi ∈ BRi(y,u). Furthermore, for x∈ Πi Sm we write x ∈ BR(y,u) if xi ∈

BRi(y,u) for all i ∈ In+1. The state (y,u)∈ Ξ is a Nash-equilibriumif

u ∈ BR(y,u). (13)

The notion of an evolutionary stable strategy formalizes that if an invasion of one group of

mutants takes place, then the ’original’ strategy fares better than the ’invading’ strategy in the

strategic environment that arises by this invasion. In our model, an invading group may

consist of as many as n+1 subgroups playing n+1 possibly deviant strategies. Not all of these

n+1 strategies must be different from the equilibrium strategies of the corresponding

subgroups. A state (y,u) is an evolutionary stable strategyif u ∈ BR(y,u), and additionally,

if there exists a neighborhood U⊂ Ξ of (y,u) satisfying

0 < (ui)Tgi(x,s) if si ≠ ui, for all (x,s) ∈ U\{(y,u)}. (14)
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Take namely, si = λui + (1−λ)z, with z ∈ Sm\{ui} arbitrary andλ ∈ [0,1] sufficiently close

to one such that (x,s)∈ U\{(y,u)}. Then it can be readily seen that (14) implies (ui−si)Tgi(x,s)

> 0, which leads to (1−λ)((ui)Tgi(x,s) − zTgi(x,s)) > 0, hence (ui)Tgi(x,s) > zTgi(x,s)). The latter

implies that the strategy ui, which belongs to the evolutionary stable strategy, does better than

any invading strategy z, against any population strategy S(x,s), sufficiently similar to the

equilibrium population strategy S(y,u).

The Nash-equilibrium provides a ’prescription’ as to what rational agents should play

in a game, expecting all other agents to be rational as well. The evolutionary stable strategy

is a refinement of the Nash-equilibrium. Equation (14) is called the stability condition in the

literature [e.g. Van Damme (1991)]. To avoid confusion with the concept of dynamic stability

of certain rest points of the dynamical system, we say that a point satisfying Eqs. (13) and

(14), satisfies strategic stability. It is worthwhile to notice that in evolutionary models in

general, and in this model in particular, these precepts of rationality are not met. The

subgroups cannot deduce how to play a Nash-equilibrium, nor do they, even if they happen

to play a Nash-equilibrium strategy, consciously play this strategy. Furthermore, the learning

speeds are not infinitely large, which means that ’locating a better strategy’ may be possible,

but switching to this better alternative takes a nontrivial amount of time. In the meantime

however, the strategic environment will have changed in general. An additional difficulty is

that neither a Nash-equilibrium, nor an evolutionary stable strategy need to be a dynamic

equilibrium in this model, since neither (13) nor (14) imply that (ui)T Ai S(y,u) = (uj)T Aj

S(y,u) for any pair i,j∈ In+1, i ≠ j. The latter would imply that Hi(y,u) ≠ 0, or Hj(y,u) ≠ 0, or

both.

The state (y,u)∈ Ξ a saturated Nash-equilibriumif u ∈ BR(y,u) and fi(y,u) ≤ 0 for

all i ∈ In+1. One might think that each saturated Nash-equilibrium is also a saturated

equilibrium, and indeed these equilibria often concur. The following propositions show that

these equilibrium concepts do not always concur. The ensuing examples may suffice as

proofs.

Proposition 5.1. Let (y,u) be a saturated Nash-equilibrium, then MBR(S(y,u)) BR(y,u).

Example 5.1.Let (y,u) be a saturated Nash-equilibrium satisfying S(y,u) = (½,½)T,

u1 = (0,1)T, y1 = 0.2, and let
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−0.1 1.3

A1 = 0 1 .

Then, A1 S(y,u) = (0.6,0.5)T, hence g11(y,u) > g1
2(y,u).

This implies that (y,u) is not a saturated equilibrium.

Proposition 5.2. Let (y,u) be a saturated equilibrium, then BR(y,u) MBR(S(y,u)).

Example 5.2.Let (y,u) be a saturated equilibrium satisfying S(y,u) = (½,½)T,

u1 = (0,1)T, y1 = 0.2, and let

0.1 −1.3

A1 = 0 −1 .

Let s = (1,0)T, then it can be verified thatπ1(y,u) = −½ <π1(y,u−i∪s) =

−0.32. Therefore (y,u) is not a saturated Nash-equilibrium.

A state (y,u)∈ Ξ is an evolutionary stable rest pointif u ∈ BR(y,u), and if there

exists a neighborhood U⊂ Ξ of (y,u) satisfying for all (x,s)∈ U\{(y,u)}

yTf(x,s) > 0 and ui ≠ si implies (ui)Tgi(x,s) > 0. (15)

The following proposition states that if (15) holds in a neighborhood of (y,u), this state must

be a saturated equilibrium.

Proposition 5.3. Each evolutionary stable rest point is a saturated equilibrium.

Proof. Suppose (y,u) is an evolutionary stable rest point and (y,u) is not a saturated

equilibrium. Then i∈ In+1 exists such that fi(y,u) > 0, or an i∈ In+1 and an

h ∈ Im+1 exist such that gih(y,u) > 0.

Suppose i∈ In+1 exists such that fi(y,u) = α > 0.

Then, take (x,u) with x = (1 − λ)y + λei, λ ∈ [0,1].

Since (17) implies (y − x)Tf(x,s) > 0 for λ > 0 sufficiently close to zero, it follows
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that λyTf(x,s) − λei f(x,s) > 0 for λ > 0 sufficiently small.

As λ ↓ 0, we obtain yTf(x,s) → 0 by complementarity, whereas eif(x,s) → α by our

assumption. This establishes a contradiction.

Similarly, suppose i∈ In+1 and h∈ Im+1 exist such that gih(y,u) = α > 0.

Take (y,s) with si = (1 − λ)ui + λeh for λ ∈ [0,1], and sj = uj for all j ≠ i.

As λ ↓ 0, we obtain (ui)Tg(y,s) → 0, whereas (si)Tg(y,s) → α, implying

(ui − si)Tg(y,s) < 0, which contradicts (15).

Eq. (15) guarantees that an evolutionary stable rest point is isolated within the set of the

saturated equilibria in U. Regrettably, Equation (15) does not imply dynamic stability.

The following establishes a connection between an evolutionary stable rest point and

an evolutionary stable equilibrium in special cases. In general however, the relation between

these equilibrium concepts is unclear. Let (y,u)∈ Ξ be a saturated equilibrium and let

P(y,u):Ξ→ n+1, be given by

P(y,u)(x,s) = (y − x)T(H(x,s) − f(x,s)) +Σi (ui − si)T(Gi(x,s) − gi(x,s)). (16)

This function can be used to show the connection between the different concepts of

evolutionary stability as follows.

Proposition 5.4. If for a saturated equilibrium (y,u), there exists a neighborhood U⊆ Ξ,

such that P(y,u)(x,s) > 0 for all (x,s)∈ U, then if (y,u) is an evolutionary stable rest point, then

(y,u) is an evolutionary stable equilibrium.

Proof. Let (y,u) be an evolutionary stable rest point, and let P(y,u)(x,s) > 0. This implies

that (y − x)T(H(x,s) − f(x,s)) +Σi (ui − si)T(Gi(x,s) − gi(x,s)) > 0, which leads to

(y − x)TH(x,s) + Σi (ui − si)TGi(x,s) > (y − x)Tf(x,s) + Σi (ui − si)Tgi(x,s) =

yTf(x,s) + Σi (ui)Tgi(x,s) > 0 by (15).

Hence, (y,u) is an evolutionary stable equilibrium.
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6. Extensions of the model and discussion

Friedman (1991) and Nachbar (1990) advocate the use of more general dynamics and

(relative) fitness functions. The motivation is that the evolutionary modelling approach is very

well applicable in a wide range of social sciences and ’evolutionary’ dynamics, as well as

fitness functions, may be highly situation dependent. The first opportunity for generalization

of our results, is along the line of Joosten (1993). In the latter paper, we examined the

consequences of combining a general relative fitness function with population dynamics,

which are weakly compatible with this relative fitness function. Generalizing the relative

fitness function enables us to incorporate, for example, potential state dependent influences

on the relative fitnesses of the subgroups in the population.

Let π:Ξ→ n+1 be the payoff functionand let this payoff function be continuous. Then,

it is easy to see that the relative fitness function given by Eq. (2) satisfies continuity, as well

as xTf(x,s) = 0 for all (x,s)∈ Ξ. Let furthermore, the continuous functionsπi
h:Ξ→ , i ∈ In+1,

h ∈ Im+1, denote the marginal contribution of pure action h at each state (x,s)∈ Ξ, to the

fitness of subgroup i. Observe that the equalityπi(x,s) = Σk si
k πi

k(x,s), need no longer hold

in general. With regard to the marginal payoff functions given by Eq. (3), continuity and (si)T

gi(x,s) = 0 for all i∈ In+1, (x,s)∈ Ξ, follow immediately. The population dynamics formalized

in Eq. (4), are to be replaced by ’weakly compatible’ population dynamics. Let H:Ξ→ n+1,

satisfy

(f) H is continuous for all (x,s)∈ Ξ,

(g) Σi Hi(x,s) = 0 for all (x,s)∈ Ξ,

(h) Hi(x,s) = 0, whenever xi = 0,

(i) xi > 0 implies sgn Hi(x,s) = sgn fi(x,s) for all (x,s)∈ Ξ.

We call a function satisfying the restrictions above, weakly compatiblewith the relative

fitness function. Let furthermore, the population dynamicsbe defined by the following system

of n+1 (autonomous) differential equations

dx/dt = H(x,s), for all (x,s)∈ Ξ, (17)
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where the function H:Ξ→ n+1 is weakly compatible with the relative fitness function. In the

sequel, we call population dynamics given by Eq. (17) weakly compatibleif the function H

is weakly compatible with the relative fitness function. For population dynamics, the forward

invariance property as captured in Restriction (h) is highly relevant. This restriction guarantees

namely that no ’spontaneous’ mutations occur in the model. In this respect, weakly

compatible population dynamics and weakly compatible learning dynamics differ

fundamentally. Note furthermore that the replicator dynamics are weakly compatible.

Clearly, the definitions of the saturated equilibrium by Eq. (6) and the evolutionary

stable equilibrium by Eq. (12) need not be adapted. The Propositions 4.1, 4.2, 4.4, 4.5 and

Corollary 4.1 will hold for this generalized dynamical system3. The following replaces

Proposition 4.3.

Proposition 6.1. Let (y,u) be the limit point for some trajectory {(x(t),s(t))}t≥0 , then the

following properties hold:

i ∈ C(y) implies h∈ C(ui): πi
h(y,u) = Σk si

k πi
k(y,u) and

πi(y,u) = Σj yj πj(y,u) (18)

h ∈ C(ui): πi
h(y,u) ≤ Σk si

k πi
k(y,u) (19)

i ∈ C(x(0))\C(y) implies h∈ C(ui): πi
h(y,u) = Σk si

k πi
k(y,u) and

πi(y,u) ≤ Σj yj πj(y,u) (20)

h ∈ C(ui): πi
h(y,u) ≤ Σk si

k πi
k(y,u) (21)

i ∉ C(x(0)) implies yi = 0 and ui = si(0) (22)

Hence, ’convergence implies saturated equilibrium’ for trajectories from the interior of the

state space, still holds. The results of Section 5 are not affected.

Arthur et al. (1986) show that general stochastic dynamics converge to the set of

stable equilibria of the deterministic part of the dynamics under weak conditions, independent

of the starting point of the dynamic process. Foster and Young (1990) analyze stochastic

3 We will not give these proofs here, as they constitute a repetition of the arguments used before.
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evolutionary game dynamics, where the probability for a unique risk dominant equilibrium

to be selected goes to unity, if the stochastic parts of the dynamics go to zero as time goes

to infinity. Stronger results were obtained by Kandoriet al. (1992), where a stochastic

replicator-type learning process converges to a unique risk dominant equilibrium. Another

extension would be to continually and stochastically disturb the payoffs as in e.g. Fudenberg

and Harris (1992). Equilibrium selection is not the topic of this paper, and the learning

process, as well as the population dynamics, may be path-dependent in the presence of

multiple attracting equilibria. This in contrast to the contributions of e.g., Kandoriet al.

(1992), and Foster and Young (1990).

What may be the sources of these stochastic disturbances? Firstly, noise may be

present in the payoff structure. For example, think of a biological system where temperature

influences the fitnesses of the subgroups to different extents. Hence, on the short run the

temperature may have a distorting influence on the evolutionary selection process. Obviously,

these distortions should ’average out’ in the long run. A second source of noise in the

dynamical system may be ’mistakes’ made in the learning process. Individuals may make

mistakes in assessing which members of its subgroup to imitate, or which strategy to switch

to, especially when the payoffs are similar. Individuals may even experiment to some extent.

Furthermore, it should be noted that the dynamics used in evolutionary game theory, are

approximations of very complicated stochastic matching processes. The approximation by

deterministic differential equations is justified under a ’large number’ assumption [Boylan

(1992), Gilboa and Matsui (1992), Binmoreet al. (1993)].

While we did not incorporate the influence of stochastic disturbances on the dynamical

process into our model, we do acknowledge the relevance of such disturbances. The

deterministic dynamics of our model are indeed in essence an approximation, the quality of

which improves as the number of individuals in the population increases. However, one rather

desirable consequence of the presence of very small stochastic disturbances, is that unstable

or degenerate equilibria of the dynamical system are eliminated, as are unstable limit cycles

for that matter. For predictive purposes only the asymtotically stable equilibria of the

dynamical system are relevant as implied by Arthuret al. (1986).

To predict outcomes, one may wish to find dynamic equilibria. Firstly, we have

demonstrated that trivial equilibria are relatively easily found, and some of these equilibria

may indeed fulfill certain stability requirements as investigated in this paper. However,
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finding or computing other equilibria, in particular equilibria in the interior of the state space,

may be difficult, given the complex dynamical system. The problem of finding a saturated

equilibrium, i.e. a state (y,u)∈ Ξ satisfying (6), for continuous functions f:Ξ→ n+1,

gi:Ξ→ m+1, i ∈ In+1, is called a nonlinear complementarity problem. To find saturated

equilibria the variable dimension restart of Doupet al. (1987) may be employed. This

simplicial algorithm may be started in an arbitrary point of the state space, which is a

simplotope, i.e. the Cartesian product of a finite number of unit simplices. Such a variable

dimension restart algorithm finds an arbitrarily accurate approximation of a saturated

equilibrium in a finite number of steps. The conditions under which the algorithm

accomplishes this, are precisely the conditions that guarantee the existence of at least one

saturated equilibrium. In Joosten (1993) we have extensively argued that simulation involves

a certain number of caveats which may lead to undesirable or inconclusive findings. The

results of Saari and Simon (1978) and Saari (1985) suggest namely that one should rely on

Scarf-type (1973), i.e. simplicial, methods to find equilibria. To the best of our knowledge,

no algorithm exists that terminates exclusively with an approximation of a stable or an

asymptotically stable equilibrium. Furthermore, if such an algorithm were to exist, it would

not terminate at all in the cases where the dynamical system possesses no stable equilibrium.

7. Conclusions

’Standard’ models in evolutionary game theory assume the strategies played by interacting

subgroups in a population, to be genetically predetermined. This is well-suited when behavior

is indeed completely or predominantly genetically determined. For more sophisticated beings

however, this approach must be regarded as rather inept. Sophisticated beings may learn from

their own experience (conditioning, reinforcement) or from the experience of other beings

(imitation). Furthermore, knowledge may be transmitted directly in some form to offspring,

or may be preserved in some form of collective memory.

We have therefore introduced the ability to learn from the strategic environment, for

all subgroups in a population. Both the composition of the population and the strategies

employed by the subgroups, are susceptible to changes. The subgroups (try to) improve their
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fitness by gradually placing more weight on the pure strategies which yield higher payoffs.

The population dynamics select the fitter subgroups over the less fit, meaning that fitter

subgroups grow faster (i.e., have more offspring). Since all subgroups interact strategically

and the strategic environment changes constantly, (truely) optimizing is generally an arduous

task.

The dynamical system which we have introduced is generally rather complex, as it

may be high-dimensional, and the differential equations describing the population dynamics

and learning dynamics may be nonlinear. It is easy to show that certain (trivial) equilibria

always exist, however it need not be that any trajectory under the dynamical system

converges, let alone that any trajectory converges to any of these trivial equilibria. We have

therefore introduced the saturated equilibrium and the evolutionary stable equilibrium. At a

saturated equilibrium no subgroup has above average fitness, furthermore each subgroup in

the population employs only a best-reply strategy against the population strategy. We have

shown that a saturated equilibrium always exists, and that trajectories starting in the interior

of the state space only converge to a saturated equilibrium. An evolutionary stable equilibrium

is a saturated equilibrium which attracts all trajectories reaching a certain neighborhood of it.

However, in contrast to the saturated equilibrium, an evolutionary stable equilibrium need not

exist. We have shown the connections of the equilibrium concepts defined in this paper, with

well-known dynamic equilibrium concepts. The dynamic properties of the saturated

equilibrium and the evolutionary stable equilibrium suggest that these concepts are adequate

generalizations of the Nash-equilibrium and the evolutionary stable state of the standard

models in evolutionary game theory, respectively.
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